1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
6

Rounded to the nearest whole number, how many protons are in an atom of krypton?

Physics
2 answers:
Andre45 [30]3 years ago
7 0

the answer is definitely 36, i took the course

Semenov [28]3 years ago
5 0
The answer is 36 protons
You might be interested in
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second
MissTica

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

5 0
2 years ago
What force must the deltoid muscle provide to keep the arm in this position?
ruslelena [56]

Answer:

Deltoid Force, F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

Additional Information:

Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.  

Explanation:

The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.

1. The torque about the point in the shoulder for the deltoid muscle, T_{Deltoid}

2. The torque of the arm, T_{arm}  

Assuming the arm is just being stretched and there is no rotation going on,

                        T_{Deltoid} = 0

                       T_{arm} = 0

       ⇒           T_{Deltoid} = T_{arm}

                  r_{d}F_{d}sin\alpha_{d} = r_{a}F_{a}sin\alpha_{a}

Where,

r_{d} is radius of the deltoid

F_{d} is the force of the deltiod

\alpha_{d} is the angle of the deltiod

r_{a} is the radius of the arm

F_{a} is the force of the arm , F_{a} = mg  which is the mass of the arm and acceleration due to gravity

\alpha_{a} is the angle of the arm

The force of the deltoid muscle is,

                                 F_{d} = \frac {r_{a}F_{a}sin\alpha_{a}}{r_{d}sin\alpha_{d}}

but F_{a} = mg ,

                ∴            F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

7 0
2 years ago
Units called BEATS measure the loudness of sounds.<br> true or false
gogolik [260]

Answer:

False.

Explanation:

Decibels (dB) measure sound levels

7 0
3 years ago
Read 2 more answers
What is the average acceleration of a car that goes from rest to 60 km/h in 8 seconds?  Be sure to show all work to support your
wel
The average acceleration can be found by dividing the final speed by the time taken to reach said point so in this case you divide 60 by 8 resulting in 7.5 which will be your answer
5 0
2 years ago
Read 2 more answers
Three charged particles are positioned in the xy plane: a 50-nC charge at y = 6 m on the y axis, a –80-nC charge at x = –4 m on
leva [86]

Answer:48 V

Explanation:

Given

Three charged particle with charge

q_1=50\ nC at y=6\ m

q_2=-80\ nC at x=-4\ m

q_3=70\ nC at y=-6\ m

Electric Potential is given by

V=\frac{kQ}{r}

Distance of q_1 from x=8\ m

d_1=\sqrt{6^2+8^2}

d_1=\sqrt{36+64}

d_1=10\ m

similarly d_2=8-(-4)

d_2=12\ m

d_3=\sqrt{(-6)^2+8^2}

d_3=\sqrt{36+64}

d_3=10\ m

Potential at x=8\ m is

V_{net}=\frac{kq_1}{d_1}+\frac{kq_2}{d_2}+\frac{kq_3}{d_3}

V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]

V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}

V_{net}=9\times 5.33

V_{net}=47.97\approx 48\ V

5 0
3 years ago
Other questions:
  • What type of energy is at work when mini-blinds are being raised or lowered
    14·1 answer
  • Why do we feel the effects of gravity given that the gravitational force is so weak?
    5·2 answers
  • Psychological disorders:
    8·2 answers
  • Who were we in the space/arms race with?<br> In the movie *Hidden figures*
    7·1 answer
  • A hollow Spherical conductor of radius 12 cm is
    11·1 answer
  • In music, the note G above middle C has a frequency of about 392 hertz. If the speed of sound in the air is 340 m/s, what is the
    8·1 answer
  • PLZZZZZZZ HELLLLPPPPPP MEEEEE
    9·1 answer
  • A treasure chest full of silver and gold coins is being lifted from a pirate ship to the shore using two ropes as shown in the f
    11·1 answer
  • How much is the velocity of a body when it travels 600m in 5 minutes?​
    15·2 answers
  • A ball dropped from a window strikes the ground 2.71 seconds later. How high is the window above the ground?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!