1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
9

Describe rotational motion

Physics
1 answer:
ratelena [41]3 years ago
3 0
Rotational motion may be described analytically for bodies undergoing pure rotation.
You might be interested in
Physics help please
zhuklara [117]

Answer: 37.981 m/s

Explanation:

This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:

<u>x-component: </u>

x=V_{o}cos\theta t   (1)

Where:

x=52 m is the point where the ball strikes ground horizontally

V_{o} is the ball's initial speed

\theta=0 because we are told the ball is thrown horizontally

t is the time since the ball is thrown until it hits the ground

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta t+\frac{gt^{2}}{2}   (2)

Where:

y_{o}=120m  is the initial height of the ball

y=0  is the final height of the ball (when it finally hits the ground)

g=-9.8m/s^{2}  is the acceleration due gravity

Knowing this, let's start by finding t from (2):

<u></u>

0=y_{o}+V_{o}sin(0\°) t+\frac{gt^{2}}{2}   (3)

0=y_{o}+\frac{gt^{2}}{2}  

t=\sqrt{\frac{-2 y_{o}}{g}}   (4)

t=\sqrt{\frac{-2 (120 m)}{-9.8m/s^{2}}}   (5)

t=4.948 s   (6)

Then, we have to substitute (6) in (1):

x=V_{o}cos(0\°) t   (7)

And find V_{o}:

V_{o}=\frac{x}{t}   (8)

V_{o}=\frac{52 m}{4.948 s}   (9)

V_{o}=10.509 m/s   (10)

On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity V:

V=V_{o} + gt (11)

V=10.509 m/s + (-9.8 m/s^{2})(4.948 s) (12)

V=-37.981 m/s (13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.

However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).

5 0
3 years ago
One observer stand on a train moving at a constant speed, and one observer stands at rest on the ground. The person on the train
ANTONII [103]

Answer:

b) Equal to c

Explanation:

According to relativity, the speed of light in free space is constant in all inertial reference frame.

3 0
3 years ago
(a) What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 500 J of en
inysia [295]

Answer:

4.42 x 10⁷ W/m²

Explanation:

A = energy absorbed = 500 J

η = efficiency = 0.90

E = Total energy

Total energy is given as

E = A/η

E = 500/0.90

E = 555.55 J

t = time = 4.00 s

Power of the beam is given as

P = E /t

P = 555.55/4.00

P = 138.88 Watt

d = diameter of the circular spot = 2.00 mm = 2 x 10⁻³ m

Area of the circular spot is given as

A = (0.25) πd²

A = (0.25) (3.14) (2 x 10⁻³)²

A = 3.14 x 10⁻⁶ m²

Intensity of the beam is given as

I = P /A

I = 138.88 / (3.14 x 10⁻⁶)

I = 4.42 x 10⁷ W/m²

6 0
3 years ago
Read 2 more answers
A tank circuit consists of an inductor and a capacitor. Give a simple explanation for why the magnetic field in the induc- tor i
ipn [44]

Answer:

If you pull a permanent magnet rapidly away from a tank circuit, what is likely to happen in that circuit?

Charge will oscillate in the tank's capacitor and inductor.

Explanation:

4 0
3 years ago
Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina
Alecsey [184]

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

3 0
3 years ago
Other questions:
  • Which season is occurring in earths northern hemisphere when earths Southern Hemisphere is tilted toward the sun
    9·2 answers
  • The ends of a magnet where thee forces are the strongest are called magnets
    11·1 answer
  • A car has a mass of 2,000kg and is traveling at 28 meters per second what is the car's kinetic energy
    14·1 answer
  • A _____ magnetic field can create an electric current.
    10·1 answer
  • Mark the correct statement: a) Charges flow through a circuit b) voltage is applied across the circuit c) voltage is the ratio o
    11·1 answer
  • . Suppose that a positive charge is brought near a neutral, insulating piece of material. Is the positive charge attracted, repe
    6·1 answer
  • Please answer these, I’m willing to give plenty of points.
    6·1 answer
  • What factor contributes most to the kinetic energy of a body in motion
    13·1 answer
  • A mass on a spring is first placed on a table and set in SHM and then held vertically and set in SHM. What variable/s would chan
    12·1 answer
  • How does light behaves when light passes through water?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!