The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4
19-? Is the exact p.d across the 114-?resistor.
Current will different
But p.d will same in parallel circuit .
The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.
On the surface, their centers are separated by 1 Earth radius.
12,000 miles above the surface, they're separated by 4 Earth radiii.
(4/1) = 4
So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.
(321 lb) / (16) = (20 and a hair) lb
The correct choice from the given list is " <em>>20 lb "</em> .
Im about to the math for this right now.
Answer:
1. The final velocity of the truck is 15 m/s
2. The distance travelled by the truck is 37.5 m
Explanation:
1. Determination of the final velocity
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Final velocity (v) =?
The final velocity of the truck can be obtained as follow:
v = u + at
v = 0 + (3 × 5)
v = 0 + 15
v = 15 m/s
Therefore, the final velocity of the truck is 15 m/s
2. Determination of the distance travelled
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Distance (s) =?
The distance travelled by the truck can be obtained as follow:
s = ut + ½at²
s = (0 × 5) + (½ × 3 × 5²)
s = 0 + (½ × 3 × 25)
s = 0 + 37.5
s = 37.5 m
Therefore, the distance travelled by the truck is 37.5 m