Electromagnetic transverse waves
Answer:
deceleration is the opposite of acceleration
Explanation:
We know that acceleration is the increase of speed with respect to time. So deceleration must be represented on the graph as a decrease in speed over time.a

<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)