Answer:
Kinetic energy = (1/2) (mass) (speed²)
Original KE = (1/2) (1430 kg) (7.5 m/s)² = 40,218.75 joules
Final KE = (1/2) (1430 kg) (11.0 m/s)² = 86,515 joules
Work done during the acceleration = (40218.75 - 86515) = 46,296.25 joules
Power = work/time = 46,296.25 joules / 9.3 sec = 4,978.1 watts .
Explanation:
Dont report my answer please
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Answer:
The nature of volcanic eruptions is highly dependent on magma viscosity and also on dissolved gas content. ... long it takes the treacle to flow from one end of a boiling tube to the other.
No. A mirror works because of reflection.