Rutherford's model of the atom (ESAAQ) Rutherford carried out some experiments which led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons.
Answer:
Speed is the rate at which an object's position changes, measured in meters per second. The equation for speed is simple: distance divided by time
Explanation:
Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)
Answer: m∠P ≈ 46,42°
because using the law of sines in ΔPQR
=> sin 75°/ 4 = sin P/3
so ur friend is wrong due to confusion between edges
+) we have: sin 75°/4 = sin P/3
=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16
=> m∠P ≈ 46,42°
Explanation:
To solve this problem, it will be necessary to apply the concepts related to the fundamental resonance frequency in a closed organ pipe.
This is mathematically given as

For fundamental frequency n is 0, then,

When,
v = Velocity of sound
L = Length,
Rearranging to find the velocity,



Therefore the speed of sound in this gas is 416m/s