Answer:
oo.p i wish I could answer that
Explanation:
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>
Answer:
because energy will be lost due to friction, sound, and heat (arguably similar to friction) and ENERGY MUST STAY THE SAME so it is IMPOSSIBLE for the ball to bounce higher than when dropped!
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37