Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is:
D gaseous mixture I hope it helps
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
- Endothermic reaction means the reactant side takes heat from surrounding and get decomposed i.e ∆H=-ve
- If the equation is exothermic then it means the reactant is happy to decompose .But it's not as it's endothermic
Now
- HgO is Omitted from our solution option.
Hg is a atom so no bonds hence no bond strength occurs.
- O_2 is a molecule and so it's our answer .
(60)/(60+5.05)=.922367 C
1-0.922367=0.07763259 H
(0.922367)(78.12)=72.05534204 C
(0.07763259)(78.12)=6.06 H
72.05534204/(12.01)=6 C
6.06/1.01=6 H
Empirical= CH
Molecular=C6H6