<h3><u>Answer;</u></h3>
volume = 6.3 × 10^-2 L
<h3><u>Explanation</u>;</h3>
Volume = mass/density
Mass = 0.0565 Kg,
Density = 900 kg/m³
= 0.0565 kg/ 900 kg /m³
= 6.3 × 10^-5 M³
but; 1000 L = 1 m³
Hence, <u>volume = 6.3 × 10^-2 L</u>
The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Motion energy is the sum of potential and kinetic energy in an object that is used to do work.
Electrons are important to the electric current because they are able to move from one atom to another. When an atom loses an electron, it becomes positively charged and when an atom gains an electron, it becomes negatively charged.
Answer:
A) M
Explanation:
The three blocks are set in series on a horizontal frictionless surface, whose mutual contact accelerates all system to the same value due to internal forces as response to external force exerted on the box of mass M (Newton's Third Law). Let be F the external force, and F' and F'' the internal forces between boxes of masses M and 2M, as well as between boxes of masses 2M and 3M. The equations of equilibrium of each box are described below:
Box with mass M

Box with mass 2M

Box with mass 3M

On the third equation, acceleration can be modelled in terms of F'':

An expression for F' can be deducted from the second equation by replacing F'' and clearing the respective variable.



Finally, F'' can be calculated in terms of the external force by replacing F' on the first equation:




Afterwards, F' as function of the external force can be obtained by direct substitution:

The net forces of each block are now calculated:
Box with mass M


Box with mass 2M


Box with mass 3M

As a conclusion, the box with mass M experiments the smallest net force acting on it, which corresponds with answer A.