During a total solar eclipse, the moon passes between Earth and the sun. This completely blocks out the sun’s light. However, the moon is about 400 times smaller than the sun. How can it block all of that light?
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion =
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by
The final equilibrium temperature is 9.50022°C
Answer:
Explanation:
The forces exerted by each mass is best understood in terms of their momentum.
Momentum is a sort of compelling force or impulse. It is given as:
Momentum = mass x velocity
Let us consider the momentum of the balls;
Substance C;
Mass = 1kg
Velocity = 5m/s
Momentum of C = 1 x 5 = 5kgm/s
Substance D:
Mass = 100kg
Velocity = 5m/s
Momentum of D = 100kg x 5m/s = 500kgm/s
Body D has a higher momentum compared to Body C. This suggests that body D will exert a higher force than C when they collide.
The higher the momentum, the more the force of impact it has.
The weights in newtowns for the given masses are
<span> masses 22.1, 33.5, 41.3, 59.2, 78
weights 216.58N 328.3N 404.74N 580.16N 764.4N
e.g, for m=22.1kg, W=22.1kgx9.8N/kg =216.58N</span>
Answer:
Since the ball becomes positively charged, it will repel as like charges repel.