Answer:
Weight
Explanation:
The spring balance is used to measure weight of an object.
Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is

where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write

1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A

(b) Force on B

(C) Force on C

(d) Force on D

(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

2. Ratio of largest force to smallest

Answer:
Current in the toroid will be 
Explanation:
We have given number of winding in rectangular toroid N = 1500
Self inductance of toroid L = 0.06 H
Magnetic energy stored in toroid 
We have to find the current in the toroid
Magnetic energy stored is equal to 


So current in the toroid will be 
A line that is falling towards the x axis represents an object that is negatively accelerating, or slowing down. When the line hits the x axis, the object has stopped moving. If the graph continues below the x axis, the object has changed direction and is moving backwards at increasing velocity.
Answer:
D
Explanation:
Michael Faraday is probably best known for his discovery of electromagnetic induction, his contributions to electrical engineering and electrochemistry or due to the fact that he was responsible for introducing the concept of field in physics to describe electromagnetic interaction.
Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
Electrical engineering is an engineering discipline concerned with the study, design and application of equipment, devices and systems which use electricity, electronics, and electromagnetism.
Electrochemistry is the branch of physical chemistry that studies the relationship between electricity, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electricity considered an outcome of a particular chemical change or vice versa.