Answer:
λ = 2.38 × 10^(-7) m
Explanation:
We are given the work function for palladium as 503.7 kJ/mol.
Now let's convert this to KJ/electron.
We know from avogadro's number that;
1 mole of electron = 6.022 × 10^(23) electrons
Thus,
503.7 kJ/mol = 503.7 × 1/(6.022 × 10^(23)) = 8.364 × 10^(-22) KJ/electron = 8.364 × 10^(-19) J/electron
Formula for energy of a photon is;
E = hv
Where;
h is Planck's constant = 6.626 × 10^(-34) J.s
v is velocity
Now, v = c/λ
Where;
c is speed of light = 3 × 10^(8) m/s
λ is wavelength of light.
Thus;
E = hc/λ
Making λ the subject, we have;
λ = hc/E
λ = (6.626 × 10^(-34) × 3 × 10^(8))/(8.364 × 10^(-19))
λ = 2.38 × 10^(-7) m
Answer:
The experimental plan is to measure the values of the dependent variable, which is the temperature of the pizza after it is cooled in each of the heat (temperature) environments, which is the dependent variable, for a given equal period of time, which is the control
Explanation:
The given parameters are;
The temperature of the pizza = 400°F
The temperature of the freezer = 0°F
The temperature of the refrigerator = 40°F
The temperature of the countertop = 78°F
Given that the independent variable = The heat to which the hot pizza is subjected
The dependent variable = The temperature to which the pizza cools down
The experiment plan includes;
1) Place the pizza which is at 400°F in each of the different heat environment, which are, the freezer, the fridge, and the counter top, for the same period of time and record the final temperature of the pizza
2) The option that gives the lowest final temperature within the same time frame is the option that will let the pizza cool down fastest.
4-ethyl-3-methyl 1 hexane
D = m / V
d = 5.0 / 45.0
d = 0.111 g/cm³