Gold has a heavy enough nucleus that its electrons must travel at speeds nearing the speed of light to prevent them from falling into the nucleus. This relativistic effect applies to those orbitals that have appreciable density at the nucleus, such as s and p orbitals. These relativistic electrons gain mass and as a consequence, their orbits contract. As these s and (to some degree) p orbits are contracted, the other electrons in d and f orbitals are better screened from the nucleus and their orbitals actually expand.
Since the 6s orbital with one electron is contracted, this electron is more tightly bound to the nucleus and less available for bonding with other atoms. The 4f and 5d orbitals expand, but can't be involved in bond formation since they are completely filled. This is why gold is relatively unreactive.
Hope it helps
Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be
.
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.
Answer:
I think that middle school teachers are interested in teaching middle schoolers.
I have the same question too!!!Dang I thought I would get a answer I just guessed