Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
Since the electric field between the plates is constant, If the two plates are brought closer together, the potential difference between the two plates decreases
The relation between potential difference and the electric field is given by ΔV = E.d
Since the electric field is maintained constant, the potential difference is directly inversely proportional to the distance between the plates.
The potential difference between the plates will therefore likewise decrease if the distance between the plates is reduced, we will state in this case.
The energy required to move a unit charge, or one coulomb, from one point to the other in a circuit is measured as the potential difference between the two points. Potential difference is measured in volts or joules per coulomb.
Refer to more about the potential difference here
brainly.com/question/12198573
#SPJ4
A diverging lens is used to permit clear vision of an object placed at infinity. The focal length of the lens is -100 cm.
<h3>What is focal length?</h3>
The focal length is half of the radius of curvature of the focal lens.
By the lens maker formula,
1/f = 1/v +1/u
where, v is the image distance and u is the object distance.
Give, the object is at infinity and the image must form at 100 cm, the the focal length will be
1/f = 1/ -100 + 1/∞
f = -100 cm
The focal length must be -100 cm for the diverging lens.
Learn more about focal length.
brainly.com/question/16188698
#SPJ1
Answer:
1497×10⁵ km
Explanation:
Speed of light in vacuum = 3×10⁵ km/s
Time taken by the light of the Sun to reach the Earth = 8 min and 19 s
Converting to seconds we get
8×60+19 = 499 seconds
Distance = Speed × Time

1 AU = 1497×10⁵ km
The Sun is 1497×10⁵ km from Earth
The answer is; C
In particular points in the earth’s surface, underground water is naturally heated to steam that can be harness for geothermal energy. The steam that ejects from the ground with high kinetic energy can be used to turn turbines that generate electricity. The underground water is usually heated by the hot rocks beneath that are subjected to the immense heat of magma or the enormous pressure of overlying crust.