Answer:
74 g/mol
Explanation:
Using a periodic table, we can determine the molar mass by adding together 1 Ca, 2 O, and 2 H. This turns out to be approximately (40+32+2) = 74 g/mol
Answer:
Electromagnetism studies the attraction of two bodies within a magnetic field.
Electromagnetic interaction is one of the four fundamental forces of the known universe. The charged particles interact electromagnetically through the exchange of photons. Experimentally it was concluded that the lines of force of magnetic fields were always closed, eliminating the possibility of a magnetic monopole, so that within a magnetic field there are two poles, in the solar system the attraction between earth and wind Solar is by means of a field.
The most correct theory on this topic is the Earth itself is protected from the solar wind by its magnetic field, most of those charged particles, and most of those charged particles are trapped in the Van Allen radiation belt.
Explanation:
The magnetosphere or magnetosphere is a region around a planet in which its magnetic field deflects most of the solar wind, forming a kind of protective shield against high energy charged particles from the Sun. This magnetic or magnetosphere atmosphere does not It is only in the solar system, but also usually occurs on other planets such as jupiter and others (since it occurs on all planets with a magnetic field)
Answer:
The molarity (M) of a solution is the number of moles of solute dissolved in one liter of solution. To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters.
Answer:
Yes chemistry. Try to add then multiply the top. Get the moles and you will find it.
Explanation:
Try to add then multiply the moles in the equation
Answer:
The correct answer is - C) a different number of neutrons per atom.
Explanation:
Isotopes of an element are the same element and same atomic number but with different atomic mass and physical properties. The difference in their atomic mass occurs due to isotopes of an element have a different number of neutrons per atom.
The number of protons and the numbers of electrons are the same in the isotopes but only change occurs in the numbers of the neutrons. In isotopes of uranium U-233, U-235, and U-238 have the same number of protons but a different number of neutrons per atom.