Answer:
237.5 K.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 5.2 atm).
V is the volume of the gas in L (V = 15.0 L).
n is the no. of moles of the gas in mol (n = 4.0 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = ??? K).
∴ T = PV/nR = (5.2 atm)(15.0 L)/(4.0 mol)(0.0821 L.atm/mol.K) = 237.5 K.
Option B is correct
K = Kp /Kr
The given equation indicating, the product containing 6 moles of proton whereas the reactant contains 2 mole of bismuth and 3 mole of hydrogen sulphide.
Hence, in reaction B there are 2 mole of bismuth and 3 mole of hydrogen sulphide reacting to produce 6 moles of proton. whereas the concentration of Bi2S3 is not considered as it is present in solid phase.
Oxygen gas produced : 0.7 g
<h3>Further explanation</h3>
Given
10.0 grams HgO
9.3 grams Hg
Required
Oxygen gas produced
Solution
Reaction⇒Decomposition
2HgO(s)⇒2Hg(l)+O₂(g)
Conservation of mass applies to a closed system, where the masses before and after the reaction are the same
mass of reactants = mass of products
mass HgO = mass Hg + mass O₂
10 g = 9.3 g + mass O₂
mass O₂ = 0.7 g
The charge of an e- is 1.60217657×10^-19 coulombs I.e. A very small number!
So 1 coulomb is much much bigger than the charge of an electron.
Salutations!
Which halogen is most likely to react?
Fluorine (F) is the halogen that is most likely to react.
Thus, your answer is B.
Hope I helped!