Answer:
A.
ice → lemonade it is the correct answer of this question
Under general relativity, there is no 'before the Big Bang'. The problem is that time is itself a part of the universe and is affected by matter and energy. Because of the huge densities just after the Big Bang, time itself is warped in such a way that it cannot go back before that event. It is somewhat like asking what is north of the north pole.
The conservation of matter and energy states that the total amount of mass and energy at one time is the same at any other time. Notice how time is a crucial part of this statement. To even talk about conservation laws, you have to have time.
The upshot is that the Big Bang did not break the conservation laws because time itself is part of the universe and started at the Big Bang and because the conservation laws need to have time in their statements.
The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.
The Answer is C. the distance light travels in a year