1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
3 years ago
9

A hockey puck with a mass of 0.16 kg travels at a velocity of 40 m/s toward a goalkeeper. The goalkeeper has a mass of 120 kg an

d is at rest. Assuming a closed system, find the total momentum of the goalkeeper and puck after the puck is caught by the goalkeeper. In 3-4 sentences, identify the object with the greater momentum after the puck is caught and explain your reasoning.
Physics
1 answer:
Ainat [17]3 years ago
4 0

Answer:

Explanation:

Momentum is the product of mass of a body and its velocity.

Given the mass of the puck m1 = 0.16kg

velocity of the puck v1 = 40m/s

Given the mass of the goalkeeper m2 = 120kg

velocity of the goalkeeper v2= 0m/s (goal keeper at rest)

The total momentum of the goalkeeper and puck after the puck is caught by the goalkeeper is expressed as:

m1v1 + m2v2 (their momentum will be added since they collide)

= 0.16(40) + 120(0)

= 0.16(40) + 0

= 6.4kgm/s

Let us calculate their common velocity using the conservation of momentum formula;

m1u1 + m2u2 = (m1+m2)v

6.4 = (0.16+120)v

6.4 = 120.16v

v = 6.4/120.16

v = 0.053m/s

Hence after collision, both objects move at a velocity of 0.053m/s

Momentum of the puck after collision = m1v

Momentum of the puck after collision = 0.16*0.053m/s

Momentum of the puck after collision = 0.0085kgm/s

Momentum of the keeper after collision = m2v

Momentum of the keeper after collision = 120*0.053m/s

Momentum of the keeper after collision = 6.36kgm/s

From the calculation above, it can be seen that the keeper has the greater momentum after the puck was caught since the momentum of the keeper after collision is greater than that of the puck

You might be interested in
The human eye is sensitive to yellow-green light having a frequency of about 5.5x 10^14 Hz (a wavelength of about 550 nm) what i
SVEN [57.7K]

Answer:The human eye is sensitive to yellow-green light having a frequency of about 5.5*10^{14} ... What is the energy in joules of the photons associated with this light? ... As the wavelength and frequency of a wave are related, we can find the energy ... In order to find this value, we need Planck's Constant, h=6.626×10−34 J⋅s h ...

Explanation:

5 0
3 years ago
A circuit contains a 1.5 volt battery and a bulb with a resistance of 3 ohms. Calculate the current
Vitek1552 [10]

The formula that links voltage (V), resistance (R) and current intensity (I) is

V=RI

Solve this formula for I to get

I=\dfrac{V}{R}

Plug your values for V and R and you'll get the current.

8 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
A parachutist of mass 56.0 kg jumps out of a balloon at a height of 1400 m and lands on the ground with a speed of 5.10 m/s. How
Vlad [161]

Answer:

769,048.28Joules

Explanation:

A parachutist of mass 56.0 kg jumps out of a balloon at a height of 1400 m and lands on the ground with a speed of 5.10 m/s. How much energy was lost to air friction during this bump

The energy lost due to friction is expressed using the formula;

Energy lost  = Potential Energy + Kinetic Energy

Energy lost  = mgh + 1/2mv²

m is the mass

g is the acceleration due to gravity

h is the height

v is the speed

Substitute the given values into the formula;

Energy lost  = 56(9.8)(1400) + 1/2(56)(5.10)²

Energy lost  = 768,320 + 728.28

Energy lost  = 769,048.28Joules

<em>Hence the amount of energy that was lost to air friction during this jump is 769,048.28Joules</em>

6 0
3 years ago
Which sequence shows all the spectral colors of visible light arranged in an increasing order of their frequency? A. red, yellow
Ad libitum [116K]

Answer:

The answer is B. red, orange, yellow, green, blue, indigo, violet

Explanation:

Most textbooks have the acronym ROYGBV to express the order in which colors appear on the spectrum of light, indigo is included in your list, and that's not a problem, although it's not typical. This spectrum of light is the same order in which colors appear in rainbows.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Most calculators operate on 6.0 V. If, instead of using batteries, you obtain 6.0 V from a transformer plugged into 110-V house
    14·1 answer
  • Which aspect of relativity makes faster-than-light travel theoretically possible?
    5·1 answer
  • How many 200 ml cups can be filled with 6 1.5 litre bottles
    8·1 answer
  • The what is s measure of the number of waves that pass a point in a given amount of time
    5·2 answers
  • Does time machine really exist?
    6·2 answers
  • the form of energy that is stored in large objects because of its internal condition, such as compression or tension, is called
    5·1 answer
  • What is the relationship between the spring constant and the period in a mass hanging on a spring oscillation and why?
    11·2 answers
  • 1. In a series circuit, if one bulb goes out the other blubs will stay lit.
    8·2 answers
  • In a double-slit experiment, light from two monochromatic light sources passes through the same double slit. The light from the
    13·1 answer
  • What is the difference between beat and beat frequency.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!