Answer:
Explanation:
As we know that the displacement of the particle from the mean position is 1/5 times of its amplitude
so we have
so now we have
now we have
so the phase other particle in opposite direction is given as
so we have phase difference given as
Answer:
The weight of measuring stick is 9.8 N
Explanation:
given information:
the mass of the rock, = 1 kg
measuring stick, x =1 m
d = 0.25 m
to find the weight of measuring stick, we can use the following equation:
τ = Fd
τ = 0
- = 0
F_{r} = the force of the rock
F_{s} = the force of measuring stick
= m g
= 1 kg x 9.8 m/s
= 9.8 N
thus, the weight of measuring stick is 9.8 N
Answer:
The direction of the field is downward, and negatively charged particles will experience an upwards force due to the field.
F = N e E where E is the value of the field and N e the charge Q
M g = N e E and M g is the weight of the drop
N = M g / (e E)
N = 1.1E-4 * 9.8 / (1.6E-19 * 370) = 1.1 * 9.8 / (1.6 * 370) * E15 = 1.82E13
.00011 kg is a very large drop
Q = N e = M g / E = .00011 * 9.8 / 370 = 2.91E-6 Coulombs
Check: N = Q / e = 2.91E-6 / 1.6E-19 = 1.82E13 electrons
"6.5 km/hr" is not a velocity. It's just a speed, so
we don't know what direction he's walking.
If he happens to be walking north, then it takes him
(12 km) / (6.5 km/hr) = 1.846... hours (rounded) .
If he's walking in any other direction, it takes him longer than that.
If the angle between north and the direction he's walking is
90 degrees or more, then he can never cover any northward
distance, no matter how long he walks.