Answer:
A
B that is Cr,MN,Fe,Co. is the correct answer
C
D
<span>The law of conservation of energy states that energy can neither be created nor destroyed - it can only be converted from one form to another. It basically means that energy can't just appear, but has to be converted from existing energy; for example, the chemical energy in petrol is turned into electrical energy to power a car.Remember the total energy of universe is constant,,and no more energy can be drawn from out if we collect all universe's energy at a single point(its the big bang energy splitted during </span>
There are 195 countries in the world today. This total comprises 193 countries that are member states of the United Nations and 2 countries that are non-member observer states: the Holy See and the State of Palestine.
There are 50 US states.
The United States currently administers 16 territories as insular areas:
American Samoa.
Guam.
Northern Mariana Islands.
Puerto Rico.
U.S. Virgin Islands.
This information is from three sources. United Nations, Wikipedia, and United States and their satellite states aka countries.
Answer:
and 
Explanation:
Our goal for this question is the calculation of the number of moles of the molecules produced by the reaction of hydrazine (
) and <u>oxygen</u> (
). So, we can start with the <u>reaction</u> between these compounds:
Now we can <u>balance the reaction</u>:
In the problem, we have the values for both reagents. Therefore we have to <u>calculate the limiting reagent</u>. Our first step, is to calculate the moles of each compound using the <u>molar masses values</u> (32.04 g/mol for
and 31.99 g/mol for
):


In the balanced reaction we have 1 mol for each reagent (the numbers in front of
and
are 1). Therefore the <u>smallest value would be the limiting reagent</u>, in this case, the limiting reagent is
.
With this in mind, we can calculate the number of moles for each product. In the case of
we have a <u>1:1 molar ratio</u> (1 mol of
is produced by 1 mol of
), so:

We can follow the same logic for the other compound. In the case of
we have a <u>1:2 molar ratio</u> (2 mol of
is produced by 1 mol of
), so:

I hope it helps!