Answer:
537.68 torr.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁).</em>
P₁ = 485 torr, T₁ = 40°C + 273 = 313 K,
P₂ = ??? torr, T₂ = 74°C + 273 = 347 K.
∴ P₂ = (P₁T₂)/(P₁) = (485 torr)(347 K)/(313 K) = 537.68 torr.
1)Identify the atoms that are participating in a covalent bond.
2)Draw each atom by using its element symbol. The number of valence electrons is shown by placing up to two dots on each side of the element symbol, with each dot representing a single valence electron.
3)Predict the number of covalent bonds each atom will make using the octet rule.
4)Draw the bonding atoms next to each other, showing a single covalent bond as either a pair of dots or a line representing a shared valence electron pair. If the molecule forms a double or triple bond, use two or three lines to represent the shared electron pairs, respectively.
Answer:
11.3 g.
Explanation:
Hello there!
In this case, since the combustion of butane is:

Thus, since there is a 1:5 mole ratio between butane and water, we obtain the following mass of water:

Therefore, the resulting mass of water is:

Best regards!
Answer:
10043.225 J
Explanation:
We'll begin by calculating the amount of heat needed to change ice to water since water at 0°C is ice. This is illustrated below:
Mass (m) = 15.5g
Latent heat of fussion of water (L) = 334J/g
Heat (Q1) =..?
Q1 = mL
Q1 = 15.5 x 334
Q1 = 5177 J
Next, we shall calculate the amount of heat needed to raise the temperature of water from 0°C to 75°C.
This is illustrated below:
Mass = 15.5g
Initial temperature (T1) = 0°C
Final temperature (T2) = 75°C
Change in temperature (ΔT) = T2 – T1 = 75 – 0 = 75°C
Specific heat capacity (C) of water = 4.186J/g°C
Heat (Q2) =?
Q2 = MCΔT
Q2 = 15.5 x 4.186 x 75
Q2 = 4866.225 J
The overall heat energy needed is given by:
QT = Q1 + Q2
QT = 5177 + 4866.225
QT = 10043.225 J
Therefore, the amount of energy required is 10043.225 J