Answer:
Mass is the amount of matter in an object and does not change with location.
Explanation:
Answer:
The carrying capacity of this population would be 125 we know this because we see that this number occur multiple times and seems to be the tipping point after which the number of the population always go down
Answer:
HCl(aq) + KOH(aq) ===> H2O(l) + KCl(aq)
Note the stoichiometry of the balanced equations shows us that HCl and KOH react in a 1:1 mole ratio. So, let us find moles of HCl and moles of KOH that are present:
moles HCl = 250.0 ml x 1 L/1000 ml x 0.25 mol/L = 0.06250 moles HCl
moles KOH = 200.0 ml x 1 L/1000 ml x 0.40 mol/L = 0.0800 moles KOH
You can see that there are more moles of KOH than there are of HCl, meaning that KOH is in excess and after neutralizing all of the HCl, the solution will be left with excess KOH making the pH > 7 = BASIC
The correct option is: ALL OF THE ABOVE.
A neutralization reaction is one in which acid and base react together in order to produce salt and water. The water formed is as a result of hydrogen ion and the hydroxyl ion which combine together to produce water. When a solution is neutralized, it implies that the salt is formed from equal weights of acid and base.
The equation to be used are:
PM = ρRT
PV = nRT
where
P is pressure, M is molar mass, ρ is density, R is universal gas constant (8.314 J/mol·K), T is absolute temperature, V is volume and n is number of moles
The density of air at 23.5°C, from literature, is 1.19035 kg/m³. Its molar mass is 0.029 kg/mol.
PM = ρRT
P(0.029 kg/mol) = (1.19035 kg/m³)(8.314 J/mol·K)(23.5+273 K)
P = 101,183.9 Pa
n = 0.576 g * 1 kg/1000 g * 1 mol/0.029 kg = 0.019862 mol
(101,183.9 Pa)V = (0.019862 mol)(8.314 J/mol·K)(23.5+273 K)
Solving for V,
V = 4.839×10⁻⁴ m³
Since 1 m³ = 1000 L
V = 4.839×10⁻⁴ m³ * 1000
V = 0.484 L