Answer:
The magnetic flux links to its turns =
Wb.
Explanation:
Given :
Radius of circular coil =
m
Number of turns = 25
Magnetic field =
T
Magnetic flux (Φ) is a measure of the magnetic field lines passes through a given area. The unit of magnetic flux is weber (Wb).
We know that,
⇒ Φ = 
Where
ext. magnetic field,
area of loop or coil.
But here given in question, we have turns of wire so our above eq. modified as follows.
⇒ Φ = 
Where
no. of turns.
∴ Φ = 
Φ = 
Thus, the magnetic flux links to its turns = 
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

Answer:
Kinematics is the study of motion of a system of bodies without directly considering the forces or potential fields affecting the motion. In other words, kinematics examines how the momentum and energy are shared among interacting bodies.
Answer:
Towards the center of the circle
Explanation:
When an object is moving in uniform circular motion, it means that it is moving at a constant speed in a circular path.
In order to follows a circular path, the particle must have a net force acting on it, that it makes it constantly changing direction - and therefore, causing an acceleration - and this force is called centripetal force.
The direction of this centripetal force is always towards the centre of the circular path.
The nature of the centripetal force is always different, depending on the situation. For instance: for a satellite orbiting the Earth in circular motion, the centripetal force is provided by the force of gravity. For a car moving round a curve, the centripetal force is provided by the force of friction between the tyres and the road.
The magnitude of the centripetal force is given by

where
m is the mass of the object
v is its speed
r is the radius of the circle