The properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
<h3>What is specific heat capacity?</h3>
The specific heat capacity is the property of a substance that shows how much its temperature changes when it is exposed to heat.
Thus, the properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
Missing parts:
A red-hot iron nail is immersed in a large bucket of water. Although the nail cools down sufficiently to be held bare-handed, the temperature of the water barely increases. Which properties keep the water temperature from changing much?
A.) water's high heat conductivity
B.) water's high specific heat capacity
C.) the iron nail's high heat conductivity
D.) the large mass of water
E.) the iron nail's high specific heat capacity
Learn more about heat capacity:brainly.com/question/12244241
#SPJ1
Answer:
Each orbit has a specific energy level.
Would you mind marking it the brainliest:).
Clouds are made of water. When water evaporates it turns into clouds. So, I think the answer is EVAPORATED water.
Answer:
Esters are both inorganic and organic acids .... Regarding the second question, it is believed that it is carried out in this way in order to recognize the C-terminal amino acid in a peptide within a protein
Explanation:
The explanation of this question is according to what was interpreted in the question, since it is considered that it is poorly written ...
What happens in this chemical reaction is that it first becomes an ester (organic or inorganic acid) so that it is later recognized in the complex peptide structure.
#1. An element or ion that has lost two electrons must have a net charge of 2+, because it has two more protons than electrons, therefore the answer is Mg2+
#2. aluminum ions have an oxidation state of 3+ and fluoride has an oxidation state of 1-, therefore I’m order for the charges to cancel you need 3 fluoride ions.
Therefore, the answer is AlF3