1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
10

A sheet of steel 4.4 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffus

ion condition. The diffusion coefficient for nitrogen in steel at this temperature is 5.9 × 10^(-11) m^2/s, and the diffusion flux is found to be 4.7 × 10^(-7) kg/m^2.s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4.5 kg/m^3.
How far into the sheet from this high-pressure side will the concentration be 2.7 kg/m^3? Assume a linear concentration profile.

Engineering
1 answer:
VARVARA [1.3K]3 years ago
7 0

Answer:

0.544×10–³

Explanation:

Please see the attached file for the solution

You might be interested in
5 cause of a electrical problem​
cupoosta [38]

Answer:

1. Poor circuit protection

2.Grounding issue

3. lighting problem

4. Electrical shocks

5. High electricity bills

Explanation:

8 0
3 years ago
Design a ductile iron pumping main carrying a discharge of 0.35 m3/s over a distance of 4 km. The elevation of the pumping stati
snow_tiger [21]

Answer:

D=0.41m

Explanation:

From the question we are told that:

Discharge rate V_r=0.35 m3/s

Distance d=4km

Elevation of the pumping station h_p= 140 m

Elevation of the Exit point h_e= 150 m

Generally the Steady Flow Energy Equation SFEE is mathematically given by

h_p=h_e+h

With

P_1-P_2

And

V_1=V-2

Therefore

h=140-150

h=10

Generally h is give as

h=\frac{0.5LV^2}{2gD}

h=\frac{8Q^2fL}{\pi^2 gD^5}

Therefore

10=\frac{8Q^2fL}{\pi^2 gD^5}

D=^5\frac{8*(0.35)^2*0.003*4000}{3.142^2*9.81*10}

D=0.41m

8 0
3 years ago
8. When supplying heated air for a building, one often chooses to mix in some fresh outside air with air that has been heated fr
Afina-wow [57]

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

5 0
3 years ago
Student A says hazardous waste can take the form of solid, liquid, or gas. Student B says hazardous waste can only take the form
lina2011 [118]

Answer:

Student A

Explanation:

hope this helps have a great day

4 0
3 years ago
3.3 Equation (2) for VCPP is rather difficult to prove at this time. Take it as a challenge to derive it as you learn increasing
podryga [215]

Answer:

For an RC integrator circuit, the input signal is applied to the resistance with the output taken across the capacitor, then VOUT equals VC. As the capacitor is a frequency dependant element, the amount of charge that is established across the plates is equal to the time domain integral of the current. That is it takes a certain amount of time for the capacitor to fully charge as the capacitor can not charge instantaneously only charge exponentially.

Therefore the capacitor current can be written as:

 

his basic equation above of iC = C(dVc/dt) can also be expressed as the instantaneous rate of change of charge, Q with respect to time giving us the following standard equation of: iC = dQ/dt where the charge Q = C x Vc, that is capacitance times voltage.

The rate at which the capacitor charges (or discharges) is directly proportional to the amount of the resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC integrator circuit is the time interval that equals the product of R and C.

Since capacitance is equal to Q/Vc where electrical charge, Q is the flow of a current (i) over time (t), that is the product of i x t in coulombs, and from Ohms law we know that voltage (V) is equal to i x R, substituting these into the equation for the RC time constant gives:

We have seen here that the RC integrator is basically a series RC low-pass filter circuit which when a step voltage pulse is applied to its input produces an output that is proportional to the integral of its input. This produces a standard equation of: Vo = ∫Vidt where Vi is the signal fed to the integrator and Vo is the integrated output signal.

The integration of the input step function produces an output that resembles a triangular ramp function with an amplitude smaller than that of the original pulse input with the amount of attenuation being determined by the time constant. Thus the shape of the output waveform depends on the relationship between the time constant of the circuit and the frequency (period) of the input pulse.

By connecting two RC integrator circuits together in parallel has the effect of a double integration on the input pulse. The result of this double integration is that the first integrator circuit converts the step voltage pulse into a triangular waveform and the second integrator circuit converts the triangular waveform shape by rounding off the points of the triangular waveform producing a sine wave output waveform with a greatly reduced amplitude.

RC Differentiator

For a passive RC differentiator circuit, the input is connected to a capacitor while the output voltage is taken from across a resistance being the exact opposite to the RC Integrator Circuit.

A passive RC differentiator is nothing more than a capacitance in series with a resistance, that is a frequency dependentTherefore the capacitor current can be written as:

 

 

device which has reactance in series with a fixed resistance (the opposite to an integrator). Just like the integrator circuit, the output voltage depends on the circuits RC time constant and input frequency.

Thus at low input frequencies the reactance, XC of the capacitor is high blocking any d.c. voltage or slowly varying input signals. While at high input frequencies the capacitors reactance is low allowing rapidly varying pulses to pass directly from the input to the output.

This is because the ratio of the capacitive reactance (XC) to resistance (R) is different for different frequencies and the lower the frequency the less output. So for a given time constant, as the frequency of the input pulses increases, the output pulses more and more resemble the input pulses in shape.

We saw this effect in our tutorial about Passive High Pass Filters and if the input signal is a sine wave, an rc differentiator will simply act as a simple high pass filter (HPF) with a cut-off or corner frequency that corresponds to the RC time constant (tau, τ) of the series network.

Thus when fed with a pure sine wave an RC differentiator circuit acts as a simple passive high pass filter due to the standard capacitive reactance formula of XC = 1/(2πƒC).

But a simple RC network can also be configured to perform differentiation of the input signal. We know from previous tutorials that the current through a capacitor is a complex exponential given by: iC = C(dVc/dt). The rate at which the capacitor charges (or discharges) is directly proportional to the amount of resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC differentiator circuit is the time interval that equals the product of R and C. Consider the basic RC series circuit below.

Explanation:

3 0
3 years ago
Other questions:
  • What is the effect of the workpiece specific cutting energy on the cutting forces, and why?
    5·1 answer
  • Describe what V1-V4 is
    10·1 answer
  • Which of these is least likely a step in replacing a failed compressor?
    12·2 answers
  • Which measuring tool will be used to determine the diameter of a crankshaft journal?
    8·1 answer
  • A 100 ft long steel wire has a cross-sectional area of 0.0144 in.2. When a force of 270 lb is applied to the wire, its length in
    15·1 answer
  • The complex power of a load is 10-10j VA. What component should be added in parallel with the load so that the new load has a un
    13·1 answer
  • 7 to 1 inch above the stock
    5·1 answer
  • 1. Which of these materials is the strongest?
    12·1 answer
  • Concerning the storage battery, what category of the primary sources is voltage produced?​
    13·1 answer
  • Construction support involves mostly what kind of work?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!