This is your perfect answer
The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
A sphere is charged with electrons to −9 × 10−6 C. The value given is the total charge of all the electrons present in the sphere. To calculate the number of electrons in the sphere, we divide the the total charge with the charge of one electron.
N = 9 × 10−6 C / 1.6 × 10−19 C
N = 5.6 x 10^13
Answer:
the displacement of the object is 5 units
Explanation:
The computation of the displacement of the object is shown below:
= Move to the right + move to the right - move to the left
= 6 units + 3 units - 4 units
= 9 units - 4 units
= 5 units
Hence, the displacement of the object is 5 units
When I become a CEO (Chief Executive Officer) of a large company (like Amazon or Tesla), I would make the company more humane, with great parameters of working conditions, paying good salaries, so we would improve production and people would be happier , being an example to the whole world of a company that values and respects its employees.
<h3>Who is the CEO?</h3>
The CEO is essentially the highest-ranking executive in the company. He has most of the power. He reports directly to the board of directors. On the other hand, the president is below the CEO in the company hierarchy.
<h3>What does the CEO of a company do?</h3>
Direct the company's next steps through strategic planning; Take care, together with directors and shareholders of the company's health; Implement or modify processes within the company or sectors; Represent and relate to external audiences.
With this information, we can conclude that I would make the company more humane, with great parameters of working conditions
Learn more about CEO in brainly.com/question/14747141
#SPJ1
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:
![\vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%20%7C%20%5Cvec%7BA%7D%20%7C%20%5C%20%28%20%5C%20cos%28%5Ctheta%29%20%5C%20%2C%20%5C%20sin%20%28%5Ctheta%29%20%5C%20%29)
where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:
![\vec{A} = 56.0 \ m \ ( \ cos( 180 \° + 30 \°) \ , \ sin (180 \° + 30 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%2056.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20180%20%5C%C2%B0%20%2B%2030%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28180%20%5C%C2%B0%20%2B%2030%20%5C%C2%B0%29%20%5C%20%29)
![\vec{A} = 56.0 \ m \ ( \ cos( 210 \°) \ , \ sin (210 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%2056.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20210%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28210%20%5C%C2%B0%29%20%5C%20%29)
![\vec{A} = ( \ -48.497 \ m \ , \ - 28 \ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%29)
![\vec{B} = 82.0 \ m \ ( \ cos( 180 \° - 49 \°) \ , \ sin (180 \° - 49 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%2082.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20180%20%5C%C2%B0%20-%2049%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28180%20%5C%C2%B0%20-%2049%20%5C%C2%B0%29%20%5C%20%29)
![\vec{B} = 82.0 \ m \ ( \ cos( 131 \°) \ , \ sin (131 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%2082.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20131%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28131%20%5C%C2%B0%29%20%5C%20%29)
![\vec{B} = ( \ -53.797 \ m \ , \ 61.886\ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%20%28%20%5C%20-53.797%20%5C%20m%20%5C%20%2C%20%5C%2061.886%5C%20m%20%5C%20%29)
Now, we can perform vector addition. Taking two vectors, the vector addition is performed:
![(a_x,a_y) + (b_x,b_y) = (a_x+b_x,a_y+b_y)](https://tex.z-dn.net/?f=%28a_x%2Ca_y%29%20%2B%20%28b_x%2Cb_y%29%20%3D%20%28a_x%2Bb_x%2Ca_y%2Bb_y%29)
So, for our vectors:
![\vec{C} = ( \ -48.497 \ m \ , \ - 28 \ m \ ) + ( \ -53.797 \ m \ , ) = ( \ -48.497 \ m \ -53.797 \ m , \ - 28 \ m \ + \ 61.886\ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BC%7D%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%29%20%2B%20%28%20%5C%20-53.797%20%5C%20m%20%5C%20%2C%20%20%29%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20-53.797%20%5C%20m%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%2B%20%5C%2061.886%5C%20m%20%5C%20%29)
![\vec{C} = ( \ - 102.294 \ m , \ 33.886 m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BC%7D%20%3D%20%28%20%5C%20-%20102.294%20%5C%20m%20%2C%20%5C%2033.886%20m%20%5C%20%29)
To find the magnitude of this vector, we can use the Pythagorean Theorem
![|\vec{C}| = \sqrt{C_x^2 + C_y^2}](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D%20%5Csqrt%7BC_x%5E2%20%2B%20C_y%5E2%7D%20)
![|\vec{C}| = \sqrt{(- 102.294 \ m)^2 + (\ 33.886 m \)^2}](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D%20%5Csqrt%7B%28-%20102.294%20%5C%20m%29%5E2%20%2B%20%28%5C%2033.886%20m%20%5C%29%5E2%7D%20)
![|\vec{C}| =107.76 m](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D107.76%20m%20)
And this is the magnitude we are looking for.