Answer: 1.467
Step-by-step explanation:
Formula of Margin of Error for (n<30):-

Given : Sample size : n= 22
Level of confidence = 0.90
Significance level : 
By using the t-distribution table ,
Critical value : 
Standard deviation: 
Then, we have

Hence, the margin of error for the confidence interval for the population mean with a 90% confidence level =1.467
Answer:
For this type of question you might want to give a domain in a set statement
ie.24 is less than 2(13,14,15,...)
<em><u>Or</u></em>
<em>If</em><em> </em><em>my</em><em> </em><em>fi</em><em>rst</em><em> </em><em>answer</em><em> </em><em>was</em><em> </em><em>a</em><em> </em><em>deviation</em><em> </em><em>then</em><em> </em><em> you</em><em> </em><em>were</em><em> </em><em>proba</em><em>bly</em><em> </em><em>being</em><em> </em><em>ask</em><em>ed</em><em> to</em><em> </em><em>subt</em><em>ract</em><em> </em><em>2</em><em>4</em><em> </em><em>fro</em><em>m</em><em> </em><em>2</em><em>t</em><em>i</em><em>m</em><em>e</em><em>s</em><em> </em><em>a</em><em> </em><em>giv</em><em>en</em><em> </em><em>num</em><em>ber</em><em> </em><em>being</em><em> </em><em>repres</em><em>e</em><em>nted</em><em> </em><em> </em><em>by</em><em> </em><em>the</em><em> </em><em>varia</em><em>ble</em><em> </em><em>x</em>
Answer:
A
Step-by-step explanation:
The side lengths must satisfy the Pythagorean Theorem to be a right triangle. The formula is
where a is the smallest side, b is the medium side, and c is the largest side. Test each set of numbers.

This satisfies the theorem. Since this is a multiple choice question, only one solution is possible. A is the solution.
Answer:
slope = 
Step-by-step explanation:
calculate the slope m using the slope formula
m = 
with (x₁, y₁ ) = (9, 6 ) and (x₂, y₂ ) = (4, 5 )
m =
=
= 
The solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
<em><u>Solution:</u></em>
Given that,

<em><u>We have to substitute eqn 1 in eqn 2</u></em>






Substitute x = 2.1925 in eqn 1
y = 2.1925 + 3
y = 5.1925
Substitute x = -3.1925 in eqn 1
y = -3.1925 + 3
y = -0.1925
Thus the solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)