Responder:
T = 0.25 segundos
f = 4 Hz
Explicación:
Paso uno:
datos dados
se nos dice que las partículas tardan 0,25 segundos en completar una vibración
por lo tanto, el período es de 0,25 segundos
¿Qué es un período de vibración?
Un período T es el tiempo necesario para que un ciclo completo de vibración pase por un punto determinado.
la expresión para el período se da a continuación.
T = 1 / f
¿Cuál es la frecuencia de vibración?
Básicamente, se refiere a la frecuencia con la que ocurren las vibraciones.
la frecuencia es una tasa, se expresa como la inversa del período
f = 1 / T
t = 1 / 0.25
f = 4 Hz
The answer is A. Refraction
Refraction is a change in direction of propagation of a wave due to a change in its transmission medium, by maintaining its frequency while changing the wave velocity at the same time will allows radios to receieve signals even though when they're not in line
Answer:
a = -2.4 m/s²
Explanation:
Given,
The initial speed of the bus, u = 24 m/s
The final speed of bus, v = 12 m/s
Time taken to reach final speed is, t = 5.0 s
The acceleration of the body is given by the change in velocity by time
a = (v - u) / t
= (12 - 24) / 5
= -2.4 m/s²
The negative sign in the acceleration indicates that the bus is decelerating.
Therefore, the acceleration of the bus is, a = -2.4 m/s²
Answer:
a) It is moving at
when reaches the ground.
b) It is moving at
when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:


b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

Solving for initial velocity (when the boulder left the volcano):


Answer:
a
The volume charge density is 
b
The surface charge density is 
Explanation:
From the question we are told that
The radius is R
The length is L
The velocity is v
The number of ions per unit volume is n
The charge is q
The thickness of the cylinder surface is 
The volume charge density is mathematically represented as
The surface charge density is mathematically represented as

substituting for 

