Answer:
Explanation:
a) Force of friction = μ R where μ is coefficient of kinetic friction and R is reaction force
R = mg where m is mass of the block
Force of friction F = μ x mg
= .173 x 12.2 x 9.8
= 20.68 N
b ) Only force of friction is acting on the body so
deceleration = force / mass = 20.68 / 12.2 = 1.7 m /s²
acceleration = - 1.7 m /s²
c )
v² = u² - 2 a s
v = 0 , u = 3.9 m /s
a = 1.7 m /s
0 = 3.9² - 2 x 1.7 x s
s = 4.47 m
Assuming that the students
worldwide are being considered, because of the extremely large population, this
can be considered as a binomial distribution. A normal distribution is used most
usually as a fair approximation of the binomial. The mean is the expectation,
therefore:<span>
E[x] = np = (16)(0.22) = 3.52
<span>μ = 3.52 </span></span>
Answer:
<em>Total momentum is conserved</em>
Explanation:
<u>Conservation of Momentum
</u>
The momentum is a physical magnitude that measures the product of the object's velocity by its mass. The total momentum of a system is the sum of all its components' individual momentums. The two-bear system starts with a total moment of

When both bears stick together, the total mass is 20 kg, and the new momentum is

We have assumed both bears move to the right after the collision. In this situation, the total momentum is conserved
Answer:

29010.53917 m
Explanation:
= Density of asteroid = 2 g/cm³
V = Volume
d = Diameter = 10 km
r = Radius = 
v = Velocity = 11 km/s
= Heat vaporization of water = 
= Change in temperature = 100-20
Mass is given by

The kinetic energy is

Heat is given by

Mass of water is 
Volume is 
Amount of water is 
If it were a cube

The height of the water would be 29010.53917 m