Answer:
V = 493421.05 [gal]
Explanation:
This is a problem that consists of handling units, we can calculate by first-hand the volume, then convert units from cubic meters to gallons.
V = 50 * 25 * 1.5
V = 1875 [m^3]
Now we need to convert units, using the proper conversion factor.
![1875[m^3]*\frac{1000lt}{1m^3} *\frac{1gal}{3.8lt} \\493421.05[gal]](https://tex.z-dn.net/?f=1875%5Bm%5E3%5D%2A%5Cfrac%7B1000lt%7D%7B1m%5E3%7D%20%2A%5Cfrac%7B1gal%7D%7B3.8lt%7D%20%5C%5C493421.05%5Bgal%5D)
Answer:
Every object has a different density and therefore carries different properties. When rays of white light strike an object, each ray light strikes the object with different frequency and therefore is absorbed and reflected differently from the host object.
In case if all the frequencies are absorbed by the object, it turns out to be black in color. Whereas on the other hand, if it is a mix of absorption and reflection, it makes different colors based on its frequencies and other properties of the object.
Answer:
Some 56 million years ago, during the transition between the Paleocene and Eocene epochs, Earth caught a fever. In a span of scarcely 20,000 years—not even a rounding error in most measures of geologic time—massive amounts of carbon dioxide flowed into the atmosphere, and average temperatures rose by five to eight degrees Celsius. The planet was transformed. Crocodiles basked on Arctic beaches lined with palm trees, and steamy swamps and jungles stretched across much of the midlatitudes. Such “hyperthermal” events periodically come and go throughout Earth’s history, but this one was particularly intense for unclear reasons. For decades, researchers have puzzled over what triggered this Paleocene-Eocene Thermal Maximum (PETM), peering through the lens of the past to better understand our planet’s present-day warming. A surge in volcanic eruptions likely played a role, perhaps aided by a comet impact. But a new study suggests the PETM may have been instigated by subtle shifts in Earth’s orbit around the sun.
A= (v - u)/t
a= (40 - 0)/5
a= 40/5
a= 8m/s^2
Answer:
Explanation:
The angular momentum of electron mvR = 6 x 10⁻²⁵ Js
Magnetic field B = 2.5 x 10⁻³ T
radius of circular path R = mv / Bq
where m is mass , v is velocity and q is charge on electron
R² = mvR / Bq
R² = 6 x 10⁻²⁵ / 2.5 x 10⁻³ x 1.6 x 10⁻¹⁹
= 1.5 x 10⁻³
R = 3.87 x 10⁻² m
mvR = 6 x 10⁻²⁵
v = 6 x 10⁻²⁵ / mR
= 6 x 10⁻²⁵ / 9.1 x 10⁻³¹ x 3.87 x 10⁻²
= .17 x 10⁸
= 17 x 10⁶ m/s