Answer:

Explanation:
The elastic potential energy of a spring is given by
, where
is the spring constant of the spring and
is displacement from point of equilibrium.
When released, this potential energy will be converted into kinetic energy. Kinetic energy is given by
, where
is the mass of the object and
is the object's velocity.
Thus, we have:

Substituting given values, we get:

Explanation:
Distance covered by the particle is given by:
Distance (d) = rate (v) × time (t)
Speed of Mary, v₁ = 50 mph
Speed of Jim, v₂ = 60 mph
It is assumed that, Mary and Jim leave at the same time. After one hour, Jim is 10 miles ahead.
Distance travelled by Jim, d₁ = (60t + 10)
Distance travelled by Mary, d₂ = 50t
The distance between Mary and Jim is greater than or equal to 100 miles.



So, Jim takes is 9 hours more than Mary to cover same distance. Hence, this is the required solution.
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.