Answer:
<h2>33.53m/s</h2>
Explanation:
Given the maximum speed limit on interstate 10 as 75 miles per hour, to get the speed in meter per seconds, we need to convert the given speed to meter per seconds.
Using the conversion 1 mile = 1609.34m and 1 hour = 3600 seconds
75 miles perhour = 75miles/1 hour
75miles/1 hour (in m/s) = 75miles*1609.34m* 1 hour/1mile * 1 hour * 3600s *
= 75 *1609.34m* 1 /1 * 1 * 3600s
= 120,700.5m/3600s
= 33.53m/s
<em>Hence the maximum speed limit on interstate 10 in metre per seconds is 33.53m/s</em>
In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
Answer:
#_photon = 5 10²⁰ photons / s
Explanation:
For this exercise let's calculate the energy of a single quantum of energy, use Planck's law
E = h f
c= λ f
E = h c / λ
λ= 1000 nm (1 m / 109 nm) = 1000 10⁻⁹ m
Let's calculate
E₀ = 6.6310⁻³⁴ 3 10⁸/1000 10⁻⁹
E₀ = 19.89 10⁻²⁰ J
This is the energy emitted by a photon let's use a proportions rule to find the number emitted in P = 100 w
#_photon = P / E₀
#_photon = 100 / 19.89 10⁻²⁰
#_photon = 5 10²⁰ photons / s
no, work is = force * distance or displacement