Lever: a bar used to move something
Wedge: a tool used to go in between object to put them in place
Incline plane : a ramp it’s used to help rise heavy things
Pulley: it’s a wheel that supports movement and change of direction
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.
Answer: g = 10.0 m/s/s
Explanation:
For a simple pendulum, provided that the angle between the lowest and highest point of his trajectory be small, the oscillation period is given by the following expression:
T = 2π √L/g , where L = pendulum length, g= accelleration of gravity.
We can also define the period, as the time needed to complete a full swing, so from the measured values, we can conclude the following :
T = 140 sec/ 101 cycles = 1.39 sec
Equating both definitions for T, we can solve for g, as follows:
g = 4 π² L / T² = 4π². 0.49 m / (1.39)² = 10.0 m/s/s