The higher the greenhouse gases, the higher the ocean temperature
"The ocean absorbs most of the excess heat from greenhouse gas emissions, leading to rising ocean temperatures"
hope this helps :)
Answer:
The answer is 6.25g.
Explanation:
First create your balanced equation. This will give you the stoich ratios needed to answer the question:
2C8H18 + 25O2 → 16CO2 + 18H2O
Remember, we need to work in terms of NUMBERS, but the question gives us MASS. Therefore the next step is to convert the mass of O2 into moles of O2 by dividing by the molar mass:
7.72 g / 16 g/mol = 0.482 mol
Now we can use the stoich ratio from the equation to determine how many moles of H2O are produced:
x mol H2O / 0.482 mol O2 = 18 H2O / 25 O2
x = 0.347 mol H2O
The question wants the mass of water, so convert moles back into mass by multiplying by the molar mass of water:
0.347 mol x 18 g/mol = 6.25g
Answer:
In the final solution, the concentration of sucrose is 0.126 M
Explanation:
Hi there!
The number of moles of solute in the volume taken from the more concentrated solution will be equal to the number of moles of solute in the diluted solution. Then, the concentration of the first solution can be calculated using the following equation:
Ci · Vi = Cf · Vf
Where:
Ci = concentration of the original solution
Vi = volume of the solution taken to prepare the more diluted solution.
Cf = concentration of the more diluted solution.
Vf = volume of the more diluted solution.
For the first dillution:
26.6 ml · 2.50 M = 50.0 ml · Cf
Cf = 26.6 ml · 2.50 M / 50.0 ml
Cf = 1.33 M
For the second dilution:
16.0 ml · 1.33 M = 45.0 ml · Cf
Cf = 16.0 ml · 1.33 M / 45.0 ml
Cf = 0.473 M
For the third dilution:
20.0 ml · 0.473 M = 75.0 ml · Cf
Cf = 20.0 ml · 0.473 M / 75.0 ml
Cf = 0.126 M
In the final solution, the concentration of sucrose is 0.126 M
The two things are hypothesis and empirical evidence
Answer : The value of ΔG expressed in terms of F is, -1 F
Explanation :
First we have to calculate the standard electrode potential of the cell.

or,


Now we have to calculate the standard cell potential.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant
= standard e.m.f of cell = +0.5 V
Now put all the given values in this formula, we get the Gibbs free energy.


Therefore, the value of ΔG expressed in terms of F is, -1 F