Answer:
Thy answer to your very sophisticated question is 1E23
Explanation:
IT JUST IS! Dont ask any questions
mAsquErade, mAsquerade tHat iS mY naME
Answer:
c. less than 60 mi/h
Explanation:
To calculate the average speed of the bus, we need to calculate the total distance traveled by the bus, as well as the total time of travel of the bus.
Total Distance Traveled = S = 100 mi + 100 mi
S = 200 mi
Now, for total time, we calculate the times for both speeds from A to b and then B to C, separately and add them.
Total Time = t = Time from A to B + Time from B to C
t = (100 mi)/(50 mi/h) + (100 mi)(70 mi/h)
t = 2 h + 1.43 h
t = 3.43 h
Now, the average speed of bus will be given as:
Average Speed = V = S/t
V = 200 mi/3.43 h
<u>V = 58.33 mi/h</u>
It is clear from this answer that the correct option is:
<u>c. less than 60 mi/h</u>
Answer:
DESCULPA MAS EU NÃO ENTENDI
Answer:
- the capacity of the pump reduces by 35%.
- the head gets reduced by 57%.
the power consumption by the pump is reduced by 72%
Explanation:
the pump capacity is related to the speed as speed is reduces by 35%
so new speed is (100 - 35) = 65% of orginal speed
speed Q ∝ N ⇒ Q1/Q2 = N1/N2
Q2 = (N2/N1)Q1
Q2 = (65/100)Q1
which means that the capacity of the pump is also reduces by 35%.
the head in a pump is related by
H ∝ N² ⇒ H1/H2 = N1²/N2²
H2 = (N2N1)²H1
H2 = (65/100)²H1 = 0.4225H1
so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.
Now The power requirement of a pump is related as
P ∝ N³ ⇒ P1/P2 = N1³/N2³
P2 = (N2/N1)³P1
H2 = (65/100)²P1 = 0.274P1
So the reduction in power is 1 - 0.274 = 0.725 which is 72%
Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.