When dT = Kf * molality * i
= Kf*m*i
and when molality = (no of moles of solute) / Kg of solvent
= 2.5g /250g x 1 mol /85 g x1000g/kg
=0.1176 molal
and Kf for water = - 1.86 and dT = -0.255
by substitution
0.255 = 1.86* 0.1176 * i
∴ i = 1.166
when the degree of dissociation formula is: when n=2 and i = 1.166
a= i-1/n-1 = (1.166-1)/(2-1) = 0.359 by substitution by a and c(molality) in K formula
∴K = Ca^2/(1-a)
= (0.1176 * 0.359)^2 / (1-0.359)
= 2.8x10^-3
Answer:
Contributes to the membrane potential.
Explanation:
Sodium-potassium pump: In cellular physiology, a protein which is identified in many cells that helping in to maintain the higher concentration of potassium ions inside than that is in the surrounding medium and maintain the lower concentration of sodium ions inside than that of the surrounding medium.
This unbalanced charge transfer contributes in the separation of charge across the cell membrane. Sodium-potassium pump is known for important contributor to action potential which is produce by nerve cells.
Answer:

for the balanced equation
