Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer: 4.speed
Explanation:
In this case, we know that the cart remains at a constant 20km/h.
Now, one could say that "the velocity remains constant, because it always is 20km/h"
But remember that velocity is a vector, so this has a direction, and if the cart is going around a turn, then the direction of motion is changing, which tell us that there is acceleration.
But the module of the velocity, the speed, remains constant at 20km/h.
Then the correct option is 4, speed.
The answer would be C. 5m
This is because to find d, you would need to divide W (125 J) by F (25 N).
Hope this helps!
D. email is saved on the server that transfers is
Answer:
Explanation:
The momentum of the first piece = m v =- m x 31 i kg m/s in - x direction direction
The momentum of the second piece = -m x 31 j kg m /s in Y - direction
Total momentum = - 31 m( i + j )
To conserve momentum , the third piece must have momentum equal to this
and opposite to it
So momentum of the third piece = 3m x V = 31 m ( i +j )
V = 31/3 ( i + j ) =
Magnitude of velocity V = √2 x 31/ 3 = 14.6 m / s
Its direction will be towards the vector i + j ie 45° from x - axis in positive direction