Answer: C
Explanation:
Answer is "It does not change"
Hope this helps!
Answer:
Option D. 0.115 M
Explanation:
The following data were obtained from the question:
Mass of CuSO4 = 36.8 g
Volume of solution = 2 L
Molar mass of CuSO4 = 159.62 g/mol
Molarity of CuSO4 =..?
Next, we shall determine the number of mole in 36.8 g of CuSO4.
This can be obtained as shown below:
Mass of CuSO4 = 36.8 g
Molar mass of CuSO4 = 159.62 g/mol
Mole of CuSO4 =.?
Mole = mass /Molar mass
Mole of CuSO4 = 36.8 / 159.62
Mole of CuSO4 = 0.23 mole
Finally, we shall determine the molarity of the CuSO4 solution as illustrated below:
Mole of CuSO4 = 0.23 mole
Volume of solution = 2 L
Molarity of CuSO4 =..?
Molarity = mole /Volume
Molarity of CuSO4 = 0.23 / 2
Molarity of CuSO4 = 0.115 M
Therefore, the molarity of the CuSO4 solution is 0.115 M.
Explanation:
Sankey diagrams , which are typically used to visualize energy transfers between processes, are named after the Irishman Matthew H. P. R. Sankey, who used this type of diagram in a publication on energy efficiency of a steam engine in 1898.
Sankey diagrams are ideal for visually representing energy balances.
how to use
1.Overview. The Sankey diagram displays how quantities are distributed among items between two or more stages.
2.Add a Sankey diagram. Choose the Data Visualization or Re-Visualize option from the toolbar and select Sankey Diagram.
3.Change link color and width.
4.Change node color.
5.Change labels and tooltips.
It's a hazard symbol for irritant.
Answer:
This flexible ability is important because it allows the cell to survive in differing environments, such as when immersed in water over long periods of time.