1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
3 years ago
10

*blank* radiation lies at frequencies just below the frequencies of visible light.

Physics
2 answers:
posledela3 years ago
7 0
The answer would be infrared.
Infrared radiation lies at frequencies just below the frequencies of visible light.
ankoles [38]3 years ago
4 0
The answer is Infrared.
hope this helps

You might be interested in
It took 3.5 hours for a train to travel the distance between two cities at a velocity of 120 km/h. How far did the train travel
Nadusha1986 [10]

Answer: 420 km

Explanation:

120 per hour, 3.5 hours

120 x 3.5 = 420

6 0
3 years ago
the maximum range of a projectile is 2÷√3 times its actual range what is the angle of the projection for the actual range​
Murrr4er [49]

Answer:

The actual angle is 30°

Explanation:

<h2>Equation of projectile:</h2><h2>y axis:</h2>

v_y(t)=vo*sin(A)-g*t

the velocity is Zero when the projectile reach in the maximum altitude:

0=vo-gt\\t=\frac{vo}{g}

When the time is vo/g the projectile are in the middle of the range.

<h2>x axis:</h2>

d_x(t)=vo*cos(A)*t\\

R=Range

R=d_x(t=2*\frac{vo}{g})

R=vo*cos(A)*2\frac{vo}{g} \\\\R=\frac{(vo)^{2}*2* sin(A)cos(A)}{g} \\\\R=\frac{(vo)^{2} sin(2A)}{g}

**sin(2A)=2sin(A)cos(A)

<h2>The maximum range occurs when A=45°(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>

Let B the actual angle of projectile

\frac{vo^{2} }{g} =(\frac{2}{\sqrt{3} }) \frac{vo^{2} *sin(2B)}{g}\\\\1= \frac{2 }{\sqrt{3}} *sin(2B)\\\\sin(2B)=\frac{\sqrt{3}}{2}\\\\

2B=60°

B=30°

7 0
3 years ago
A nonconducting sphere has radius R = 1.29 cm and uniformly distributed charge q = +3.83 fC. Take the electric potential at the
zalisa [80]

Answer:

a) -2.516 × 10⁻⁴ V

b) -1.33 × 10⁻³ V

Explanation:

The electric field inside the sphere can be expressed as:

E= \frac{kqr}{R^3}

The potential at a distance can be represented as:

V(r) - V(0) = -\int\limits^r_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) = [\frac{qr^2}{8 \pi E_0R^3 }]₀

V(r) =   -[\frac{qr^2}{8 \pi E_0R^3 }]₀

Given that:

q = +3.83 fc = 3.83 × 10⁻¹⁵ C

r = 0.56 cm

 = 0.56 × 10⁻² m

R = 1.29 cm

  =  1.29 × 10⁻² m

E₀ = 8.85 × 10⁻¹² F/m

Substituting our values; we have:

V(r) = -\frac{(3.83*10^{-15}C)(0.560*10^{-2}m)^2}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)^3}

V(r) = -2.15  × 10⁻⁴ V

The difference between the radial distance  and center can be expressed as:

V(r) - V(0) = -\int\limits^R_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) =  [\frac{qr^2}{8 \pi E_0R^3 }]^R

V(r) = -\frac{qR^2}{8 \pi E_0R^3 }

V(r) = -\frac{q}{8 \pi E_0R }

V(r) = -\frac{(3.83*10^{-15}C)}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)}

V(r) = -0.00133

V(r) = - 1.33 × 10⁻³ V

8 0
3 years ago
If an atom has an atomic number of 2, it will be stable with 2 electrons in its valence shell. Group of answer choices True Fals
torisob [31]

Answer: True

Explanation:

Atomic number is defined as the number of protons or the number of electrons that are present in an electrically neutral atom.

Atomic number = Number of protons = number of electrons = 2

Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.

The electronic configuration will be 1s^2

As its duplet is already complete and it has noble gas configuration , it is stable with 2 valence electrons.

3 0
3 years ago
The right-hand rule predicts the direction of the force on a positively charged object moving in a gravitational field true fals
eimsori [14]
The statement above is FALSE.
The right hand rule is used in physics to predict the direction of the force on a charged object moving in a MAGNETIC FIELD. The right hand rule is used to relate the relationship between the magnetic field and the forces that are exerted on the moving objects in the field. Using the right hand rule, for a positively charged object that is moving in an electric field, the pointer finger will point in the direction the charged object is moving, the middle finger will point in the direction of the magnetic field and the thumb will point in the direction of the magnetic force that is pushing the charged object.
3 0
3 years ago
Other questions:
  • You have a remote-controlled car that has been programmed to have velocity v⃗ =(−3ti^+2t2j^)m/s, where t is in s. At t = 0 s, th
    5·1 answer
  • A ski starts from rest and slides down a 22 incline 75 m long. if the coefficient of friction is 0.090, what is the ski's speed
    5·1 answer
  • Which law of motion accounts for the following statement?"The gravity of the Sun causes the planets to move in a circular path."
    9·2 answers
  • You’ll get 100 points for answering this quick question
    15·2 answers
  • The collective body of observations of a natural phenomenon on which scientific explanations are based is called?
    10·2 answers
  • How do I identify the symbols used for positive and negative charge
    9·1 answer
  • The bodies of many cars are designed to compress or crumple during an accident. Why are cars built with a crumple zone?
    7·1 answer
  • Decelerating cor, driver having taken his foot off the accelerator and applying <br>brakes​
    6·1 answer
  • a steel ball bearing is released from a height hhh and rebounds after hitting a steel plate to a height hhh. what is true about
    9·1 answer
  • Newton's Third Law of Motion relates to action and reaction. Which of the following scenarios accurately names the correct actio
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!