An increase in motion and less attraction between particles
<span>63.4 g/mol
First, let's determine how many atoms per unit cell in face-centered cubic.
There is 8 corners, each of which has 1 atom, and each of those atoms is shared between 8 other unit cells. So 8*1/8 = 1 atom per unit cell. Additionally, there are 6 faces, each of which has 1 atom that's shared between 2 unit cells. So 6*1/2 = 3 atoms per unit cell. So each unit cell has the mass of 1+3 = 4 atoms.
Since there is 1000 liters per cubic meter, the mass per liter is 8920 kg/1000 = 8.920 kg/L. Now the mass per unit cell is 8920 g * 4.72x10^-26 = 4.21024x10^-22 g per unit cell. The mass per atom is 4.21024x10^-22 g / 4 = 1.05256x10^-22 g/atom, Finally, multiply by Avogadro's number, getting 1.05256x10^-22 g/atom * 6.0221409x10^23 atom/mol = 63.38664625704 g/mol.
Rounding to 3 significant digits gives 63.4 g/mol.</span>
Answer:
Explanation:
<u>1) Find the z-scores:</u>
a) z-score for 22.6 inches length
- z = [ 22.6 - 20 ] / 2.6 = 1.00
b) z-score for 17.4 inches length
- z = [ 17.4 - 20 ] / 2.6 = - 1.00
<u>2) Probability</u>
Then, you have to find the probability that the length of an infant is between - 1.00 and 1.00 standards deviations (σ) from the mean (μ).
That is a well known value of 68%, which is part of the 68-95-99.7 empirical rule.
The most exact result is obtained from tables and is 68.26%:
- 1 - P (z ≥ 1.00) - P (z ≤ - 1.00) = 1 - 0.1587 - 0.1587 = 0.6826 = 68.26%
Answer:
0.05
moles
Explanation:
In a mole of any substance, there exist
6.02⋅1023
units of that substance.
So here, we got:
3.01⋅1022Mg atoms⋅1mol6.02⋅1023M gatoms=0.05mol
Answer:
Fewer hydrogen bonds form between alcohol molecules. As a result, less heat is needed for alcohol molecules to break away from solution and enter the air.
Explanation:
Hydrogen bonding is a kind of intermolecular interaction that occurs when hydrogen is bonded to a highly electronegative atom.
Both water and alcohols exhibit hydrogen bonding. However, alcohols exhibit fewer hydrogen bonds than water.
As a result of this, the temperature of evaporation is much higher for water than for alcohol because hydrogen bonds hold water molecules more closely than alcohol molecules are held.