D transferring electrons because that causes electricity
Answer: 1037 miles per hour
Explanation: In order to see the sun in the same position in the sky, you would have to travel against the speed of rotation of the earth, because this is what causes the sun to appear in a constantly changing position.
Because of this, we will have to calculate the speed of rotation of the earth. To get started, we must know the circumference of the earth. Assuming the circumference formula for a sphere,

Where R is the radius of the earth, we find that the perimeter of the earth is approximately 24881 miles. The equation to calculate speed is given by

Because the earth completes one rotation in 24 hours, we have to find the speed of rotation as the perimeter of the earth divided by 24 hours.
The obtained result is 1037 miles per hour.
You would have to travel at 1037 miles per hour in the direction opposite to the direction the rotation is ocurring in.
Answer:
The mass of the earth, 
Explanation:
It is given that,
Time taken by the moon to orbit the earth, 
Distance between moon and the earth,
We need to find the mass of the Earth using Kepler's third law of motion as :




So, the mass of the earth is
. Hence, this is the required solution.
The correct answer is The storage and management of radioactive wastes
Explanation:
In general, nuclear reactions (changes in the nucleus of an atom such as fission) release a lot of energy including a lot of heat. Moreover, this heat is used by humans to obtain electricity and other types of energy, which is known as a nuclear power. This type of power is considered positive because it does not emit carbon and it is quite efficient.
However, in most cases, it is a threat to the environment and living beings because storing and managing the wastes of this type of power is difficult and expensive. Indeed, dealing with the wastes of nuclear power requires complex infrastructure, and any accident or leaking leads to serious consequences from the death of those exposed to the wastes to permanent loss of diversity or changes in nearby areas.
Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>