Answer: Contact force
a. Applying break in a vehicle.
d. The speed of ball rolling on ground is reduced
Non contact force
b. A coconut falling from a coconut tree.
c. The planets revolving around the sun.
Explanation:
The contact force is the force which exerts when one object or entity comes in contact with other object or entity. For example, on application of break the vehicle stops, the force is applied on the breaks to stop the vehicle. The ball rolling on the ground the speed reduces so the application of force on the ground also reduces.
The non contact force is the force one object exerts on the other without coming in direct contact with the other object. The force exerted by one object on other due to gravity is a non contact force. The coconut falling on the ground and planets revolving around the sun are examples of non contact force due to gravity.
Answer:
D
Explanation:
Stomata take in carbon dioxide (i think they realease oxygen too), Phloem transports the glucose throughout the plant, Xylem transports the water and minerals from the roots. If you want me to explain more I can
The image formed by a concave mirror with the object placed at the center of curvature is real inverted and formed at the center of curvature. Using the ray diagram a ray from the top of the object to the mirror through f then reflected parallel to the principal axis,then the ray through the center of curvature reflected through the same point both intersect at a plane through center curvature and perpendicular to the principal axis. The point of intersection forms the top of the image and the center of curvature forms the bottom. Therefore, the correct choices are : real and inverted
The complete options are;
A. The average kinetic energy of their particles is the same.
B. The total kinetic energy of their particles is equal.
C. Heat flows from the larger object to the smaller object.
D. Heat flows from the object with higher potential energy to the object with lower potential energy.
Answer:
Explanation:
From the relationship between average kinetic energy and temperature, we have the formula;
E_k = (3/2)kT
Where;
k is a constant known as boltzmann constant.
T is known as temperature
We can see that at the same temperature (T), kinetic energy will remain the same because from the formula, E_k depends km only the temperature.
Thus, average kinetic energy of their particles saying that.