Answer:

Explanation:
Given that,
Speed of transverse wave, v₁ = 20 m/s
Tension in the string, T₁ = 6 N
Let T₂ is the tension required for a wave speed of 30 m/s on the same string. The speed of a transverse wave in a string is given by :
........(1)
T is the tension in the string
is mass per unit length
It is clear from equation (1) that :





So, the tension of 13.5 N is required for a wave speed of 30 m/s. Hence, this is the required solution.
A) Oil B) Wood C) 0.02J D) 3g E) Gas
A. A clastic Sedimentary rock
Conductors (something that allows electricity to flow easily) allow for electricity to flow easily. This would be the wires. If you don't have conductors, then you cannot have electricity flow.
Insulators (something that doesn't allow electricity to flow through it) is important because it allows us to be able to touch the cables or place them next to one another and not shock ourselves
Hope this helps