C
The atomic mass is the sum of the number of neutrons and protons.
Answer: 600N
Explanation:
Centripetal force is the force that causes a body to move in a circular path.
Centripetal force = MV²/r
M = 75kg v = 80m/s r = 0.80km = 800m
Substituting the values given in the formula;
F = 75 × 80²/800
F = 600N
The magnitude of the resultant force on the 75kg pilot is 600N.
Answer: a) 6.67cm/s b) 1/2
Explanation:
According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities respectively
m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s
Since momentum = mass × velocity
The conservation of momentum of the body will be
m1u1 + m2u2 = (m1+m2)v
Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.
5(20) + 10(0) = (5+10)v
100 + 0 = 15v
v = 100/15
v = 6.67cm/s
Therefore the velocity of each object after the collision is 6.67cm/s
b) kinectic energy of the 10.0g object will be 1/2MV²
= 1/2×10×6.67²
= 222.44Joules
kinectic energy of the 5.0g object will be 1/2MV²
= 1/2×5×6.67²
= 222.44Joules
= 111.22Joules
Fraction of the initial kinetic transferred to the 10g object will be
111.22/222.44
= 1/2
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = 
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C
Can you provide the multiple choices ?