Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
0.370 mol metal oxide = 55.45 g
<span>1 mol = 55.45/0.370 = 149.86 g </span>
<span>in 1 mol there are 3 mol O = 16 * 3 = 48 g of O </span>
<span>there is 48/149.86 * 100% O in the sample </span>
<span>the sample has 48/149.86 * 0.370 = 0.119 g O</span>
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Hey Umm here you can search it honey bun
Answer:
The peripheral nervous system can be further divided into the autonomic system, which regulates involuntary actions, and the somatic system, which controls voluntary actions.
Explanation:
mark as brainly plz and thanks