Answer:
A = 674.33mmHg
B = 0.385atm
Explanation:
Both question A and B requires the application of pressure law which states that the pressure of a fixed mass of gas is directly proportional to its temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
P1 / T1 = P2 / T2 = P3 / T3 =.......= Pn/Tn
A)
Data:
P1 = 799mmHg
T1 = 50°C = (50 + 273.15) = 323.15K
P2 = ?
T2 = 273.15K
P1 / T1 = P2 / T2
Solve for P2
P2 = (P1 × T2) / T1
P2 = (799 × 273.15) / 323.15
P2 = 674.37mmHg
The final pressure is 674.37mmHg
B)
P1 = 0.470atm
T1 = 60°C = (60 + 273.15)K = 333.15K
P2 = ?
T2 = 273.15K
P1 / T1 = P2 / T2
Solve for P2,
P2 = (P1 × T2) / T1
P2 = (0.470 × 273.15) / 333.15
P2 = 0.385atm
The final pressure is 0.385atm
I think it might be 8 but not 100 percent took class 2 years ago
Answer:
![[SO_2Cl_2]_{600}= 0.0842 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D_%7B600%7D%3D%200.0842%20M)
Explanation:
Some theoretical knowledge is required here. We should understand that whenever we plot the natural logarithm, ln, of a concentration vs. time and obtain a straight line, this indicates a first-order reaction. That said, since this is the case here, we have a first-order reaction with respect to
.
The linear equation has the following terms:

It is a linear form of the integrated first-order law equation:
![ln[SO_2Cl_2]_t = -kt + ln[SO_2Cl_2]_o](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_t%20%3D%20-kt%20%2B%20ln%5BSO_2Cl_2%5D_o)
Therefore, the rate constant, k, is:

The natural logarithm of initial molarity is:
![ln[SO_2Cl_2]_o = -2.30](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_o%20%3D%20-2.30)
Using the equation, we may substitute for t = 600 s and obtain the natural logarithm of the concentration at that time:
![ln[SO_2Cl_2]_{600} = -0.000290 s^{-1}\cdot 600 s - 2.30 = -2.474](https://tex.z-dn.net/?f=ln%5BSO_2Cl_2%5D_%7B600%7D%20%3D%20-0.000290%20s%5E%7B-1%7D%5Ccdot%20600%20s%20-%202.30%20%3D%20-2.474)
Take the antilog of both sides to find the actual molarity:
![[SO_2Cl_2]_{600}=e^{-2.474} = 0.0842 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D_%7B600%7D%3De%5E%7B-2.474%7D%20%3D%200.0842%20M)
Well, 2 litres is 2 kilograms. 1000 grams = 1 kilogram
So that means that 2 litres of water = 2000 grams
Answer:
Explanation:
Mitochondria are a part of eukaryotic cells. The main job of mitochondria is to perform cellular respiration. This means it takes in nutrients from the cell, breaks it down, and turns it into energy. This energy is then in turn used by the cell to carry out various functions.