Answer:
Part a) When collision is perfectly inelastic

Part b) When collision is perfectly elastic

Explanation:
Part a)
As we know that collision is perfectly inelastic
so here we will have

so we have

now we know that in order to complete the circle we will have


now we have

Part b)
Now we know that collision is perfectly elastic
so we will have

now we have


Answer:
He's 3 miles west of school.
Explanation:
He went 5 miles up and 5 miles down which means that he really didn't go up or down. In between that, he went 3 miles west so if the 5 milers don't count, this puts him at 3 miles west of school.
Answer:
electrons will migrate untill there is uniform distribution of charge .
and sphere became uniformly charged
Explanation:
as conducting sphere is charged positively it is given . the left side of sphere is charged positively . there is negative charge on the left side that will be attracted by positive charge of right side .
therefore electrons from left side will start migrate towards right side due to attraction of positive charge of right side .
therefore electron will start migrate uniformly .
electrons will migrate untill there is uniform distribution of charge .
and sphere became uniformly charged
Explanation:
Hey there!!
Here, Given is,
Efficiency = 75%
VR = no. of pulleys = 5
Now,


100% ma = 75%×5


Therefore, MA is 3.75.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Compute the ball's angular speed <em>v</em> :
<em>v</em> = (1 rev) / (2.3 s) • (2<em>π</em> • 180 cm/rev) • (1/100 m/cm) ≈ 4.917 m/s
Use this to find the magnitude of the radial acceleration <em>a</em> :
<em>a</em> = <em>v </em>²/<em>R</em>
where <em>R</em> is the radius of the circular path. We get
<em>a</em> = <em>v</em> ² / (180 cm) = <em>v</em> ² / (1.8 m) ≈ 13.43 m/s²
The only force acting on the ball in the plane parallel to the circular path is the tension force. By Newton's second law, the net force acting on the ball has magnitude
∑ <em>F</em> = <em>m</em> <em>a</em>
where <em>m</em> is the mass of the ball. So, if <em>t</em> denotes the magnitude of the tension force, then
<em>t</em> = (1.6 kg) (13.43 m/s²) ≈ 21 N