Answer:
Thermal energy of an isolated system changes with time If the mechanical energy of that system is constant according to the first law of thermodynamics, which states that thermal energy of an isolated system can still change as long as the total energy of that system does not change.
Explanation:
Let point A be 0.0 miles (first city)
Let point B be 160.5 miles (first city to second city)
Let point C be 28.5 miles (first city to mail stop)
Take C – A = C [28.5 - 0.0 = 28.5] (This checks the distance between city 1 and Mail stop)
Then Take B – C = Distance from the first city to the second city [160.5 - 28.5 = 132 Miles]
Answer: The Mail stop is 132 miles from the Second City.
Answer:
Chemical to kinetic and thermal.
Explanation:
You would eat the food (chemical) than you would jog and move around (kinetic). While running your body would also give off heat (thermal).Than your body would sweat to cool itself down.
(a) 5.66 m/s
The flow rate of the water in the pipe is given by

where
Q is the flow rate
A is the cross-sectional area of the pipe
v is the speed of the water
Here we have

the radius of the pipe is
r = 0.260 m
So the cross-sectional area is

So we can re-arrange the equation to find the speed of the water:

(b) 0.326 m
The flow rate along the pipe is conserved, so we can write:

where we have

and where
is the cross-sectional area of the pipe at the second point.
Solving for A2,

And finally we can find the radius of the pipe at that point:

Friction force is when you rub 2 things together and they get warm. Motion, on the other hand, is if your walking along the sidewalk - you hardly get warmer -------
Unless it's a colder day outside and you're walking SO you decide to rub your hands together to get warm, but if you were just walking , its motion and only motion - no friction :):)