Answer:
a) The strength of gravity decreases if one moved away from Jupiter
b) The strength of gravity increases if one fell into Jupiter
Explanation:
The gravitational attraction is given by Newton law of gravitation as follows;

Where;
G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
M = The mass of Jupiter
m = The mass of the nearby body
R = The distance between the centers of Jupiter and the body
From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies
Therefore, as one moves away, R increases, and the strength of gravity reduces
Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.
Answer:
208.33 W
141.26626 seconds
Explanation:
E = Energy = 
t = Time taken = 8 h
m = Mass = 2000 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of platform = 1.5 m
Power is obtained when we divide energy by time

The average useful power output of the person is 208.33 W
The energy in the next part would be the potential energy
The time taken would be

The time taken to lift the load is 141.26626 seconds
A scientific journal article that is peer reviewed. This is because it is more likely not have factual information and sources to that information.
Desired operation: A + B = C; {A,B,C) are vector quantities.
<span>Issue: {A,B} contain error (measurement or otherwise) </span>
<span>Objective: estimate the error in the vector sum. </span>
<span>Let A = u + du; where u is the nominal value of A and du is the error in A </span>
<span>Let B = v + dv; where v is the nominal value of B and dv is the error in B </span>
<span>Let C = w + dw; where w is the nominal value of C and dw is the error in C [the objective] </span>
<span>C = A + B </span>
<span>w + dw = (u + du) + (v + dv) </span>
<span>w + dw = (u + v) + (du + dv) </span>
<span>w = u+v; dw = du + dv </span>
<span>The error associated with w is the vector sum of the errors associated with the measured quantities (u,v)</span>