Answer:
B
Explanation:
Because the sharpener is attached to an electrical outlet
Answer:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
The coefficients are 3, 1, 3, 1
Explanation:
From the question given above, the following data were:
Silver chloride reacts with sodium phosphate to yield sodium chloride and silver phosphate. This can be written as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
The above equation can be balanced as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
There are 3 atoms of Na on the left side and 1 atom on the right side. It can be balance by putting 3 in front of NaCl as shown below:
AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
There are 3 atoms of Cl on the right side and 1 atom on the left. It can be balance by putting 3 in front of AgCl as shown below:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
Thus, the equation is balanced.
The coefficients are 3, 1, 3, 1
The correct answer would be 3.49 times 10^ minus 24 molecules
Given:
Ma = 31.1 g, the mass of gold
Ta = 69.3 °C, the initial temperature of gold
Mw = 64.2 g, the mass of water
Tw = 27.8 °C, the initial temperature of water
Because the container is insulated, no heat is lost to the surroundings.
Let T °C be the final temperature.
From tables, obtain
Ca = 0.129 J/(g-°C), the specific heat of gold
Cw = 4.18 J/(g-°C), the specific heat of water
At equilibrium, heat lost by the gold - heat gained by the water.
Heat lost by the gold is
Qa = Ma*Ca*(T - Ta)
= (31.1 g)*(0.129 J/(g-°C)(*(69.3 - T °C)-
= 4.0119(69.3 - T) j
Heat gained by the water is
Qw = Mw*Cw*(T-Tw)
= (64.2 g)*(4.18 J/(g-°C))*(T - 27.8 °C)
= 268.356(T - 27.8)
Equate Qa and Qw.
268.356(T - 27.8) = 4.0119(69.3 - T)
272.3679T = 7738.32
T = 28.41 °C
Answer: 28.4 °C