A: The total building of Campbell high school, including the trailers and the construction area
Answer:
a) i₈ = 0.5 i₄, b) i₁₀ = 0.3 i₃, i₁₀ = 0.8 i₈
Explanation:
For this exercise we use ohm's law
V = i R
i = V / R
we assume that the applied voltage is the same in all cases
let's find the current for each resistance
R = 4 Ω
i₄ = V / 4
R = 8 Ω
i₈ = V / 8
we look for the relationship between these two currents
i₈ /i₄ = 4/8 = ½
i₈ = 0.5 i₄
R = 3 Ω
i₃ = V3
R = 10 Ω
i₁₀ = V / 10
we look for relationships
i₁₀ / 1₃ = 3/10
i₁₀ = 0.3 i₃
i₁₀ / 1₈ = 8/10
i₁₀ = 0.8 i₈
"<span>H-C=N:" is the one answer among the choices given in the question that shows the correct dot diagram. The correct option among all the options that are given in the question is the fourth option or option "D". The other choices can be neglected. I hope that this is the answer that has come to your help.</span>
Answer:
It is possible by increasing the speed of the tennis ball by a factor of (Mass of the tennis ball)/(Mass of the basketball)
Explanation:
The momentum of a body = The bod's mass × The body's velocity
Therefore, the momentum of a given mass of an object, such as a tennis ball can be increased by increasing the velocity or speed of the object. Whereby the speed of the ball, v₁, is increased such that the momentum of the basketball and the tennis ball will be the same, is given by the following equation
Mass of the basketball × v₂ = Mass of the tennis ball × v₁
Therefore, v₁/v₂ = (Mass of the tennis ball)/(Mass of the basketball)
Answer:

Explanation:
Momentum is the product of velocity and mass. The formula is:

We know the rock is falling. Its momentum is 200 kilograms meters per second and its velocity is 5 meters per second. Substitute the values into the formula.

We are solving for m, the mass. We must isolate the variable. It is being multiplied by 5 meters per second. The inverse of multiplication is division, so we divided both sides by 5.0 m/s.


The units of meters per second (m/s) cancel.


The falling rock has a mass of <u>40 kilograms.</u>