This kind of questions cannot be open because there might be many different answers depending of the focus.
In fact, I found the set of options that comes with this questions. This is:
A. behavior of ions.
B. molecular bonding.
C. molecular shape.
D. molecular motion.
Of course, the answer is the option D. molecular motion.
And, of course, you need an explanation.
It is good to know that the word kinetic refers to motion, so definetly kinetic molecular theory is a theory about the motion of the molecules.
With that you likely had been able to answer the question. But it is good to know what the molecular theory is.
The molecular kinetic molecular theory explains the properties and behavior of the gases in terms of the motion of its particles (molecules) making several assumptions about the energy, size and motion of such particles.
Answer:
See explanation
Explanation:
Full molecular equation;
2NH3(aq) + AgNO3(aq) -------> [Ag(NH3)2]NO3(aq)
Full ionic equation
2NH3(aq) + Ag^+(aq) + NO3^-(aq) --------> [Ag(NH3)2]^+(aq) + NO3^-(aq)
Net ionic equation;
2NH3(aq) + Ag^+(aq) --------> [Ag(NH3)2]^+(aq)
When Silver nitrate is mixed with a solution of aqueous ammonia, a white and cloudy solution was observed.
The density of Ca will be between that of Mg and Sr
Explanation:
Ca, Mg and Sr are group II elements. They are called alkali earth metals. The correct order of the elements in this group are: Be, Mg, Ca, Sr, Ba and Ra.
Density is an intensive property of matter which describes the amount of matter(mass) per volume of a substance.
- Density varies proportionally with mass. The higher the mass, the higher its density.
- On the periodic table, atomic mass which the number of protons and neutrons in the nucleus of an atom increases down the group.
- This implies a progradation in the value of density down the group. Therefore one expects that the value of density of Ca will fall between that of Mg and Sr. It cannot be more than 2.6g/cm³ nor less than 1.74g/cm³.
Learn more:
density brainly.com/question/2658982
mass number brainly.com/question/2597088
#learnwithBrainly
Actually, that does not happen until the protostar becomes a star when nuclear ignition starts and is maintained. It takes awhile for new star to go through its T-Tauri stage and settle down on the main sequence.
<span>A STAR does not reach hydrostatic equilibrium until it on the main sequence. Otherwise, it would remain a brown dwarf with not enough mass to to maintain nuclear fusion for more than 3,000 to 10,00 years. </span>