Answer:
Angle of incline is 20.2978°
Explanation:
Given that;
Gravitational acceleration on a planet a = 3.4 m/s²
Gravitational acceleration on Earth g = 9.8 m/s²
Angle of incline = ∅
Mass of the stone = m
Force on the stone along the incline will be;
F = mgSin∅
F = ma
The stone has the same acceleration as that of the gravitational acceleration on the planet.
so
ma = mgSin∅
a = gSin∅
Sin∅ = a / g
we substitute
Sin∅ = (3.4 m/s²) / (9.8 m/s²)
Sin∅ = 0.3469
∅ = Sin⁻¹( 0.3469 )
∅ = 20.2978°
Therefore, Angle of incline is 20.2978°
Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
Answer: 58.8235 km/h
speed = distance/time
the distance is 10 km
the time is 10 minutes
the unit is not correct, so we first change minute to hour
so 10/60 is 0.166667, rounded to 0.17.
10 km/ 0.17 hours =
The length of the wire is 36 m.
<u>Explanation:</u>
Given, Diameter of sphere = 6 cm
We know that, radius can be found by taking the half in the diameter value. So,

Similarly,

We know the below formulas,


When equating both the equations, we can find length of wire as below, where 


The
value gets cancelled as common on both sides, we get

The
value gets cancelled as common on both sides, we get
