Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
Answer:
The diameter of the piston of the players equals 55.136 cm.
Explanation:
from the principle of transmission of pressure in a hydraulic lift we have

Since the force in the question is the weight of the individuals thus upon putting the values in the above equation we get

Solving for
we get

Designing warning and evacuation systems could be a step in a plan designed to mitigate the negative impacts of a natural hazard.
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>
Answer:
Average velocity

Average speed,

Explanation:
(a)Average velocity
We have to find the average velocity. We know that velocity is defined as the rate of change of displacement with respect to time.
To find the average velocity we have to find the total displacement.
since displacement along east direction is 50m
and displacement along west=40m
so total displacement,

total time,

therefore, average velocity

(b)Average Speed:
Average speed is defined as the ratio of total distance to the total time
it means
Average speed= total distance/total time
here total distance,

and total time,

therefore,
Average speed,
