1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
10

A sphere is assumed to have the properties of water and has an initial heat generation 46480 W/m^3 How much should the heat gene

ration term be lowered, if the maximum temperature at the center of the spherical geometry is to be limited to 360 Kelvin? The radius of the sphere is 0.1m ambient air temperature is 25 C. Convert the resulting heat generation to Food Calories per hour
Engineering
1 answer:
Verdich [7]3 years ago
3 0

Answer:

Resulting heat generation, Q = 77.638 kcal/h

Given:

Initial heat generation of the sphere, Q_{Gi} = 46480 W/m^{3}

Maximum temperature, T_{m} = 360 K

Radius of the sphere, r = 0.1 m

Ambient air temperature, T = 25^{\circ}C = 298 K

Solution:

Now, maximum heat generation, Q_{m} is given by:

T_{m} = \frac{Q_{m}r^{2}}{6K} + T                     (1)

where

K = Thermal conductivity of water at T_{m} = 360 K = 0.67 W/m^{\circ}C

Now, using eqn (1):

360 = \frac{Q_{m}\times 0.1^{2}}{6\times 0.67} + 298

Q_{m} = 24924 W/m^{3}

max. heat generation at maintained max. temperature of 360 K is 24924W/m^{3}

For excess heat generation, Q:

Q = (Q_{Gi} - Q_{m})\times volume of sphere, V

where

V = \frac{4}{3}\pi r^{3}

Q = (46480 - 24924)\times \frac{4}{3}\pi\0.1^{3} = 21556\times \frac{4}{3}\pi\0.1^{3} W/m^{3}

Q = 90.294 W

Now, 1 kcal/h = 1.163 W

Therefore,

Q = \frac{90.294}{1.163} = 77.638 kcal/h

You might be interested in
It is desired to produce and aligned carbon fiber-epoxy matrix composite having a longitudinal tensile strength of 630 MPa. Calc
ratelena [41]

Answer:

The answer is below

Explanation:

Given that:

Diameter (D) = 0.03 mm = 0.00003 m, length (L) = 2.4 mm = 0.0024 m, longitudinal tensile strength (\sigma_{cd})=630\ MPa = 630*10^6\ Pa, Fracture strength

(\sigma_f)=5100\ MPa=5100*10^6\ Pa,fiber-matrix\ stres(\sigma_m)=17.5\ MPa=17.5*10^6\ Pa,matrix\ strength=\tau_c=17\ MPa=17 *10^6\ Pa

a) The critical length (L_c) is given by:

L_c=\sigma_f*(\frac{D}{2*\tau_c} )=5100*10^6*\frac{0.00003}{2*17*10^6}=0.0045\ m=4.5\ mm

The critical length (4.5 mm) is greater than the given length, hence th composite can be produced.

b) The volume fraction (Vf) is gotten from the formula:

\sigma_{cd}=\frac{L*\tau_c}{D}*V_f+\sigma_m(1-V_f)\\\\V_f=\frac{\sigma_{cd}-\sigma_{m}}{\frac{L*\tau_c}{D}-\sigma_{m}}  \\\\Substituting:\\\\V_f=\frac{630*10^6-17.5*10^6}{\frac{0.0024*17*10^6}{0.00003} -17.5*10^6} \\\\V_f=0.456

6 0
3 years ago
Discuss the difference between the observed and calculated values. Is this error? If yes, what is the source?
Scrat [10]

Answer and Explanation:

In any experiment, the observed values are the actual values obtained in any experiment.

The calculated values are the values that are measured by using the observed values in a formula.

The observed values are primary values whereas the calculated values are the secondary values as calaculations are made using observed values.

Yes, if the observed values are of low accuracy.

The values should be recorded with proper care and attention in order to avoid any error.

8 0
3 years ago
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
HEY Y'ALL!!! WILL GIVE BRAINLEST AND THANKS+A LOT OF POINTS!!!!! So in class our teacher wants to help us think out of the box m
Elden [556K]

Answer:

2) phone

3) snake

Explanation:

NO EXPLANATION

5 0
3 years ago
Read 2 more answers
Foundation dampproofing is most commonly installed: Select one: a. on both the inside and outside of the basement wall b. Baseme
puteri [66]

Answer:A

Explanation:

Damp roof is generally applied at basement level which restrict the movement of moisture through walls and floors. Therefore it could be inside or the outside basement walls.

4 0
3 years ago
Other questions:
  • Select the material used to clean a prototype board before soldering.
    5·1 answer
  • What is the difference between a job and a profession
    9·1 answer
  • Sarah is developing a Risk Assessment for her organization. She is asking each department head how long can they be without thei
    6·1 answer
  • A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 78 MPa (70.98 ksi). If the plate is
    7·1 answer
  • How do I calculate the gear ratio​
    6·1 answer
  • - Scrap tire management is primarily regulated at the
    14·2 answers
  • To test the effects of a new fertilizer, 100 plots were divided in half. Fertilizer A is randomly applied to one half, and B to
    13·2 answers
  • According to the eNotes, a program that eliminates sales and promotions in an effort to minimize the bullwhip effect would be ca
    13·1 answer
  • The Hoover Dam is 221 m tall and 379 m wide. Approximating it as a flat plate, determine the effective resultant force on the da
    6·1 answer
  • Thoughts about drinking and driving
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!