1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
10

A sphere is assumed to have the properties of water and has an initial heat generation 46480 W/m^3 How much should the heat gene

ration term be lowered, if the maximum temperature at the center of the spherical geometry is to be limited to 360 Kelvin? The radius of the sphere is 0.1m ambient air temperature is 25 C. Convert the resulting heat generation to Food Calories per hour
Engineering
1 answer:
Verdich [7]3 years ago
3 0

Answer:

Resulting heat generation, Q = 77.638 kcal/h

Given:

Initial heat generation of the sphere, Q_{Gi} = 46480 W/m^{3}

Maximum temperature, T_{m} = 360 K

Radius of the sphere, r = 0.1 m

Ambient air temperature, T = 25^{\circ}C = 298 K

Solution:

Now, maximum heat generation, Q_{m} is given by:

T_{m} = \frac{Q_{m}r^{2}}{6K} + T                     (1)

where

K = Thermal conductivity of water at T_{m} = 360 K = 0.67 W/m^{\circ}C

Now, using eqn (1):

360 = \frac{Q_{m}\times 0.1^{2}}{6\times 0.67} + 298

Q_{m} = 24924 W/m^{3}

max. heat generation at maintained max. temperature of 360 K is 24924W/m^{3}

For excess heat generation, Q:

Q = (Q_{Gi} - Q_{m})\times volume of sphere, V

where

V = \frac{4}{3}\pi r^{3}

Q = (46480 - 24924)\times \frac{4}{3}\pi\0.1^{3} = 21556\times \frac{4}{3}\pi\0.1^{3} W/m^{3}

Q = 90.294 W

Now, 1 kcal/h = 1.163 W

Therefore,

Q = \frac{90.294}{1.163} = 77.638 kcal/h

You might be interested in
How much to build a barber clipper?
goldenfox [79]
Like the price to manufacture?
8 0
3 years ago
Tech A says you can find the typical angle of a V-block engine by dividing the number of cylinders by 720
Lady_Fox [76]

Answer:

Tech A is correct

Explanation:

Tech A is right as its V- angle is identified by splitting the No by 720 °. Of the piston at the edge of the piston.

Tech B is incorrect, as the V-Angle will be 720/10 = 72 for the V-10 motor, and he says 60 °.

8 0
3 years ago
If the rotational speed of a pump motor is reduced by 35%, what is the effect on the pump performance in terms of capacity, head
FinnZ [79.3K]

Answer:

- the capacity of the pump reduces by 35%.

- the head gets reduced by 57%.

the power consumption by the pump is reduced by 72%

Explanation:

the pump capacity is related to the speed as speed is reduces by 35%

so new speed is (100 - 35) = 65% of orginal speed

speed Q ∝ N ⇒ Q1/Q2 = N1/N2

Q2 = (N2/N1)Q1    

Q2 = (65/100)Q1

which means that the capacity of the pump is also reduces by 35%.

the head in a pump is related by

H ∝ N² ⇒ H1/H2 = N1²/N2²

H2 = (N2N1)²H1

H2 = (65/100)²H1 = 0.4225H1

so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.

Now The power requirement of a pump is related as

P ∝ N³ ⇒ P1/P2 = N1³/N2³

P2 = (N2/N1)³P1

H2 = (65/100)²P1 = 0.274P1

So the reduction in power is 1 - 0.274 = 0.725 which is 72%

Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.  

8 0
3 years ago
Which of the following explains the main reason to cut a piece of wood on the outside of the measurement mark?
maks197457 [2]
I think it’s D ?? I’m not completely sure tho
4 0
3 years ago
Seawater containing 3.50 wt% salt passes through a series of 11 evaporators. Roughly equal quantities of water are vaporized in
statuscvo [17]

Answer: the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr

Explanation:

F, W and B are the fresh feed, brine and total water obtained

w = 2 x 10^4 L/h

we know that

F = W + B

we substitute

F = 2 x 10^4 + B

F = 20000 + B .................EQUA 1

solute

0.035F = 0.05B

B = 0.035F/0.05

B = 0.7F

now we substitute value of B in equation 1

F = 20000 + 0.7F

0.3F = 20000

F = 20000/0.3

F = 66666.67 kg/hr

B = 0.7F

B = 0.7 * F

B = 0.7 * 66666.67

B = 46,666.669 kg/hr

the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr

8 0
4 years ago
Other questions:
  • The function of a circuit breaker is to _____.
    12·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • Are ocean currents always cold
    10·1 answer
  • A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of
    14·1 answer
  • Two routes connect an origin and a destination. Routes 1 and 2 have performance functions t1 = 2 + X1 and t2 = 1 + X2, where the
    6·1 answer
  • What are the advantages to a quality<br> saw?
    6·1 answer
  • Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
    8·1 answer
  • For many clients, a decision is based primarily on time and money, which are the two most abundant
    10·2 answers
  • Characteristics of 3 types of soil​
    10·1 answer
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!